1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
|
/*************************************************************************
* Copyright (C) 2009-2014 Tavian Barnes <tavianator@tavianator.com> *
* *
* This file is part of The Dimension Library. *
* *
* The Dimension Library is free software; you can redistribute it and/ *
* or modify it under the terms of the GNU Lesser General Public License *
* as published by the Free Software Foundation; either version 3 of the *
* License, or (at your option) any later version. *
* *
* The Dimension Library is distributed in the hope that it will be *
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty *
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with this program. If not, see *
* <http://www.gnu.org/licenses/>. *
*************************************************************************/
/**
* @file
* Triangles.
*/
#include "dimension.h"
typedef struct dmnsn_triangle_payload {
dmnsn_vector na, nab, nac;
} dmnsn_triangle_payload;
/** Triangle intersection callback. */
static bool
dmnsn_triangle_intersection_fn(const dmnsn_object *triangle, dmnsn_line l,
dmnsn_intersection *intersection)
{
const dmnsn_triangle_payload *payload = triangle->ptr;
/* See the change of basis in dmnsn_new_triangle() */
double t = -l.x0.z/l.n.z;
double u = l.x0.x + t*l.n.x;
double v = l.x0.y + t*l.n.y;
if (t >= 0.0 && u >= 0.0 && v >= 0.0 && u + v <= 1.0) {
intersection->t = t;
intersection->normal = dmnsn_vector_add(
payload->na,
dmnsn_vector_add(
dmnsn_vector_mul(u, payload->nab),
dmnsn_vector_mul(v, payload->nac)
)
);
return true;
}
return false;
}
/** Triangle inside callback. */
static bool
dmnsn_triangle_inside_fn(const dmnsn_object *triangle, dmnsn_vector point)
{
return false;
}
/* Allocate a new triangle */
dmnsn_object *
dmnsn_new_triangle(dmnsn_vector a, dmnsn_vector b, dmnsn_vector c,
dmnsn_vector na, dmnsn_vector nb, dmnsn_vector nc)
{
na = dmnsn_vector_normalized(na);
nb = dmnsn_vector_normalized(nb);
nc = dmnsn_vector_normalized(nc);
dmnsn_triangle_payload *payload = DMNSN_MALLOC(dmnsn_triangle_payload);
payload->na = na;
payload->nab = dmnsn_vector_sub(nb, na);
payload->nac = dmnsn_vector_sub(nc, na);
dmnsn_object *triangle = dmnsn_new_object();
triangle->ptr = payload;
triangle->intersection_fn = dmnsn_triangle_intersection_fn;
triangle->inside_fn = dmnsn_triangle_inside_fn;
triangle->free_fn = dmnsn_free;
triangle->bounding_box.min = dmnsn_zero;
triangle->bounding_box.max = dmnsn_new_vector(1.0, 1.0, 0.0);
/*
* Make a change-of-basis matrix
*
* The new vector space has corners at <0, 1, 0>, <0, 0, 1>, and 0,
* corresponding to the basis (ab, ac, ab X ac).
*/
dmnsn_vector ab = dmnsn_vector_sub(b, a);
dmnsn_vector ac = dmnsn_vector_sub(c, a);
dmnsn_vector normal = dmnsn_vector_cross(ab, ac);
triangle->intrinsic_trans = dmnsn_new_matrix4(ab, ac, normal, a);
return triangle;
}
/* Allocate a new flat triangle */
dmnsn_object *
dmnsn_new_flat_triangle(dmnsn_vector a, dmnsn_vector b, dmnsn_vector c)
{
/* Flat triangles are just smooth triangles with identical normals at all
verticies */
dmnsn_vector normal = dmnsn_vector_cross(
dmnsn_vector_sub(b, a),
dmnsn_vector_sub(c, a)
);
return dmnsn_new_triangle(a, b, c, normal, normal, normal);
}
|