summaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
authorTavian Barnes <tavianator@tavianator.com>2020-06-24 15:20:02 -0400
committerTavian Barnes <tavianator@tavianator.com>2020-06-24 15:44:14 -0400
commit39c0348c9f98b4dd29bd112a0a2a42faa67c92d4 (patch)
tree6c8ed80bd8cbbb0af79c9ac57bdb39634fa178fd /src
parentadaafdd7043507cbceae65e78c38954e47103b5c (diff)
downloadkd-forest-39c0348c9f98b4dd29bd112a0a2a42faa67c92d4.tar.xz
Use the acap nearest neighbors implementationHEADmaster
Diffstat (limited to 'src')
-rw-r--r--src/color.rs107
-rw-r--r--src/forest.rs (renamed from src/metric/forest.rs)135
-rw-r--r--src/frontier.rs104
-rw-r--r--src/frontier/image.rs11
-rw-r--r--src/frontier/mean.rs19
-rw-r--r--src/frontier/min.rs17
-rw-r--r--src/main.rs3
-rw-r--r--src/metric.rs546
-rw-r--r--src/metric/approx.rs131
-rw-r--r--src/metric/kd.rs224
-rw-r--r--src/metric/vp.rs137
-rw-r--r--src/soft.rs (renamed from src/metric/soft.rs)111
12 files changed, 338 insertions, 1207 deletions
diff --git a/src/color.rs b/src/color.rs
index 5d50aa1..ff113a7 100644
--- a/src/color.rs
+++ b/src/color.rs
@@ -3,8 +3,9 @@
pub mod order;
pub mod source;
-use crate::metric::kd::{Cartesian, CartesianMetric};
-use crate::metric::{Metric, SquaredDistance};
+use acap::coords::{Coordinates, CoordinateMetric, CoordinateProximity};
+use acap::distance::{Metric, Proximity};
+use acap::euclid::{EuclideanDistance, euclidean_distance};
use image::Rgb;
@@ -14,7 +15,11 @@ use std::ops::Index;
pub type Rgb8 = Rgb<u8>;
/// A [color space](https://en.wikipedia.org/wiki/Color_space).
-pub trait ColorSpace: Copy + From<Rgb8> + CartesianMetric {
+pub trait ColorSpace: Copy + From<Rgb8>
+ + Coordinates
+ + Metric
+ + CoordinateMetric<<Self as Coordinates>::Value, Distance = <Self as Proximity>::Distance>
+{
/// Compute the average of the given colors.
fn average<I: IntoIterator<Item = Self>>(colors: I) -> Self;
}
@@ -41,32 +46,38 @@ impl From<Rgb8> for RgbSpace {
}
}
-impl Metric<[f64]> for RgbSpace {
- type Distance = SquaredDistance;
+impl Coordinates for RgbSpace {
+ type Value = f64;
- fn distance(&self, other: &[f64]) -> Self::Distance {
- self.0.distance(other)
+ fn dims(&self) -> usize {
+ self.0.dims()
+ }
+
+ fn coord(&self, i: usize) -> f64 {
+ self.0.coord(i)
}
}
-impl Metric for RgbSpace {
- type Distance = SquaredDistance;
+impl Proximity for RgbSpace {
+ type Distance = EuclideanDistance<f64>;
fn distance(&self, other: &Self) -> Self::Distance {
- self.0.distance(&other.0)
+ euclidean_distance(&self.0, &other.0)
}
}
-impl Cartesian for RgbSpace {
- fn dimensions(&self) -> usize {
- self.0.dimensions()
- }
+impl Metric for RgbSpace {}
+
+impl CoordinateProximity<f64> for RgbSpace {
+ type Distance = EuclideanDistance<f64>;
- fn coordinate(&self, i: usize) -> f64 {
- self.0.coordinate(i)
+ fn distance_to_coords(&self, other: &[f64]) -> Self::Distance {
+ euclidean_distance(&self.0, other)
}
}
+impl CoordinateMetric<f64> for RgbSpace {}
+
impl ColorSpace for RgbSpace {
fn average<I: IntoIterator<Item = Self>>(colors: I) -> Self {
let mut sum = [0.0, 0.0, 0.0];
@@ -161,32 +172,38 @@ impl From<Rgb8> for LabSpace {
}
}
-impl Metric<[f64]> for LabSpace {
- type Distance = SquaredDistance;
+impl Coordinates for LabSpace {
+ type Value = f64;
+
+ fn dims(&self) -> usize {
+ self.0.dims()
+ }
- fn distance(&self, other: &[f64]) -> Self::Distance {
- self.0.distance(other)
+ fn coord(&self, i: usize) -> f64 {
+ self.0.coord(i)
}
}
-impl Metric for LabSpace {
- type Distance = SquaredDistance;
+impl Proximity for LabSpace {
+ type Distance = EuclideanDistance<f64>;
fn distance(&self, other: &Self) -> Self::Distance {
- self.0.distance(&other.0)
+ euclidean_distance(self.0, other.0)
}
}
-impl Cartesian for LabSpace {
- fn dimensions(&self) -> usize {
- self.0.dimensions()
- }
+impl Metric for LabSpace {}
- fn coordinate(&self, i: usize) -> f64 {
- self.0.coordinate(i)
+impl CoordinateProximity<f64> for LabSpace {
+ type Distance = EuclideanDistance<f64>;
+
+ fn distance_to_coords(&self, other: &[f64]) -> Self::Distance {
+ euclidean_distance(&self.0, other)
}
}
+impl CoordinateMetric<f64> for LabSpace {}
+
impl ColorSpace for LabSpace {
fn average<I: IntoIterator<Item = Self>>(colors: I) -> Self {
let mut sum = [0.0, 0.0, 0.0];
@@ -241,32 +258,38 @@ impl From<Rgb8> for LuvSpace {
}
}
-impl Metric<[f64]> for LuvSpace {
- type Distance = SquaredDistance;
+impl Coordinates for LuvSpace {
+ type Value = f64;
+
+ fn dims(&self) -> usize {
+ self.0.dims()
+ }
- fn distance(&self, other: &[f64]) -> Self::Distance {
- self.0.distance(other)
+ fn coord(&self, i: usize) -> f64 {
+ self.0.coord(i)
}
}
-impl Metric for LuvSpace {
- type Distance = SquaredDistance;
+impl Proximity for LuvSpace {
+ type Distance = EuclideanDistance<f64>;
fn distance(&self, other: &Self) -> Self::Distance {
- self.0.distance(&other.0)
+ euclidean_distance(&self.0, &other.0)
}
}
-impl Cartesian for LuvSpace {
- fn dimensions(&self) -> usize {
- self.0.dimensions()
- }
+impl Metric for LuvSpace {}
+
+impl CoordinateProximity<f64> for LuvSpace {
+ type Distance = EuclideanDistance<f64>;
- fn coordinate(&self, i: usize) -> f64 {
- self.0.coordinate(i)
+ fn distance_to_coords(&self, other: &[f64]) -> Self::Distance {
+ euclidean_distance(&self.0, other)
}
}
+impl CoordinateMetric<f64> for LuvSpace {}
+
impl ColorSpace for LuvSpace {
fn average<I: IntoIterator<Item = Self>>(colors: I) -> Self {
let mut sum = [0.0, 0.0, 0.0];
diff --git a/src/metric/forest.rs b/src/forest.rs
index 887ff12..56dff7e 100644
--- a/src/metric/forest.rs
+++ b/src/forest.rs
@@ -1,8 +1,9 @@
//! [Dynamization](https://en.wikipedia.org/wiki/Dynamization) for nearest neighbor search.
-use super::kd::KdTree;
-use super::vp::VpTree;
-use super::{Metric, NearestNeighbors, Neighborhood};
+use acap::distance::Proximity;
+use acap::kd::FlatKdTree;
+use acap::vp::FlatVpTree;
+use acap::{NearestNeighbors, Neighborhood};
use std::iter::{self, Extend, FromIterator};
@@ -129,17 +130,17 @@ impl<T: IntoIterator> IntoIterator for Forest<T> {
}
}
-impl<T, U, V> NearestNeighbors<T, U> for Forest<V>
+impl<K, V, T> NearestNeighbors<K, V> for Forest<T>
where
- U: Metric<T>,
- V: NearestNeighbors<T, U>,
- V: IntoIterator<Item = T>,
+ K: Proximity<V>,
+ T: NearestNeighbors<K, V>,
+ T: IntoIterator<Item = V>,
{
- fn search<'a, 'b, N>(&'a self, mut neighborhood: N) -> N
+ fn search<'k, 'v, N>(&'v self, mut neighborhood: N) -> N
where
- T: 'a,
- U: 'b,
- N: Neighborhood<&'a T, &'b U>,
+ K: 'k,
+ V: 'v,
+ N: Neighborhood<&'k K, &'v V>
{
for item in &self.buffer {
neighborhood.consider(item);
@@ -153,17 +154,121 @@ where
}
/// A forest of k-d trees.
-pub type KdForest<T> = Forest<KdTree<T>>;
+pub type KdForest<T> = Forest<FlatKdTree<T>>;
/// A forest of vantage-point trees.
-pub type VpForest<T> = Forest<VpTree<T>>;
+pub type VpForest<T> = Forest<FlatVpTree<T>>;
#[cfg(test)]
mod tests {
use super::*;
- use crate::metric::tests::test_nearest_neighbors;
- use crate::metric::ExhaustiveSearch;
+ use acap::euclid::Euclidean;
+ use acap::exhaustive::ExhaustiveSearch;
+ use acap::{NearestNeighbors, Neighbor};
+
+ use rand::prelude::*;
+
+ type Point = Euclidean<[f32; 3]>;
+
+ fn test_empty<T, F>(from_iter: &F)
+ where
+ T: NearestNeighbors<Point>,
+ F: Fn(Vec<Point>) -> T,
+ {
+ let points = Vec::new();
+ let index = from_iter(points);
+ let target = Euclidean([0.0, 0.0, 0.0]);
+ assert_eq!(index.nearest(&target), None);
+ assert_eq!(index.nearest_within(&target, 1.0), None);
+ assert!(index.k_nearest(&target, 0).is_empty());
+ assert!(index.k_nearest(&target, 3).is_empty());
+ assert!(index.k_nearest_within(&target, 0, 1.0).is_empty());
+ assert!(index.k_nearest_within(&target, 3, 1.0).is_empty());
+ }
+
+ fn test_pythagorean<T, F>(from_iter: &F)
+ where
+ T: NearestNeighbors<Point>,
+ F: Fn(Vec<Point>) -> T,
+ {
+ let points = vec![
+ Euclidean([3.0, 4.0, 0.0]),
+ Euclidean([5.0, 0.0, 12.0]),
+ Euclidean([0.0, 8.0, 15.0]),
+ Euclidean([1.0, 2.0, 2.0]),
+ Euclidean([2.0, 3.0, 6.0]),
+ Euclidean([4.0, 4.0, 7.0]),
+ ];
+ let index = from_iter(points);
+ let target = Euclidean([0.0, 0.0, 0.0]);
+
+ assert_eq!(
+ index.nearest(&target).expect("No nearest neighbor found"),
+ Neighbor::new(&Euclidean([1.0, 2.0, 2.0]), 3.0)
+ );
+
+ assert_eq!(index.nearest_within(&target, 2.0), None);
+ assert_eq!(
+ index.nearest_within(&target, 4.0).expect("No nearest neighbor found within 4.0"),
+ Neighbor::new(&Euclidean([1.0, 2.0, 2.0]), 3.0)
+ );
+
+ assert!(index.k_nearest(&target, 0).is_empty());
+ assert_eq!(
+ index.k_nearest(&target, 3),
+ vec![
+ Neighbor::new(&Euclidean([1.0, 2.0, 2.0]), 3.0),
+ Neighbor::new(&Euclidean([3.0, 4.0, 0.0]), 5.0),
+ Neighbor::new(&Euclidean([2.0, 3.0, 6.0]), 7.0),
+ ]
+ );
+
+ assert!(index.k_nearest(&target, 0).is_empty());
+ assert_eq!(
+ index.k_nearest_within(&target, 3, 6.0),
+ vec![
+ Neighbor::new(&Euclidean([1.0, 2.0, 2.0]), 3.0),
+ Neighbor::new(&Euclidean([3.0, 4.0, 0.0]), 5.0),
+ ]
+ );
+ assert_eq!(
+ index.k_nearest_within(&target, 3, 8.0),
+ vec![
+ Neighbor::new(&Euclidean([1.0, 2.0, 2.0]), 3.0),
+ Neighbor::new(&Euclidean([3.0, 4.0, 0.0]), 5.0),
+ Neighbor::new(&Euclidean([2.0, 3.0, 6.0]), 7.0),
+ ]
+ );
+ }
+
+ fn test_random_points<T, F>(from_iter: &F)
+ where
+ T: NearestNeighbors<Point>,
+ F: Fn(Vec<Point>) -> T,
+ {
+ let mut points = Vec::new();
+ for _ in 0..255 {
+ points.push(Euclidean([random(), random(), random()]));
+ }
+ let target = Euclidean([random(), random(), random()]);
+
+ let eindex = ExhaustiveSearch::from_iter(points.clone());
+ let index = from_iter(points);
+
+ assert_eq!(index.k_nearest(&target, 3), eindex.k_nearest(&target, 3));
+ }
+
+ /// Test a [NearestNeighbors] impl.
+ fn test_nearest_neighbors<T, F>(from_iter: F)
+ where
+ T: NearestNeighbors<Point>,
+ F: Fn(Vec<Point>) -> T,
+ {
+ test_empty(&from_iter);
+ test_pythagorean(&from_iter);
+ test_random_points(&from_iter);
+ }
#[test]
fn test_exhaustive_forest() {
diff --git a/src/frontier.rs b/src/frontier.rs
index c7b7ca5..74c7398 100644
--- a/src/frontier.rs
+++ b/src/frontier.rs
@@ -5,11 +5,13 @@ pub mod mean;
pub mod min;
use crate::color::{ColorSpace, Rgb8};
-use crate::metric::kd::Cartesian;
-use crate::metric::soft::SoftDelete;
-use crate::metric::Metric;
+use crate::soft::SoftDelete;
+
+use acap::coords::{Coordinates, CoordinateMetric, CoordinateProximity};
+use acap::distance::{Proximity, Metric};
use std::cell::Cell;
+use std::ops::Deref;
use std::rc::Rc;
/// A frontier of pixels.
@@ -52,23 +54,39 @@ impl<C: ColorSpace> Pixel<C> {
}
}
-impl<C: Metric> Metric<Pixel<C>> for C {
- type Distance = C::Distance;
+/// A reference-counted pixel, to work around the coherence rules.
+#[derive(Clone, Debug)]
+struct RcPixel<C>(Rc<Pixel<C>>);
- fn distance(&self, other: &Pixel<C>) -> Self::Distance {
- self.distance(&other.color)
+impl<C: ColorSpace> RcPixel<C> {
+ fn new(x: u32, y: u32, color: C) -> Self {
+ Self(Rc::new(Pixel::new(x, y, color)))
+ }
+}
+
+impl<C> Deref for RcPixel<C> {
+ type Target = Pixel<C>;
+
+ fn deref(&self) -> &Self::Target {
+ self.0.deref()
}
}
-impl<C: Metric<[f64]>> Metric<[f64]> for Pixel<C> {
+/// A search target, to work around the coherence rules.
+#[derive(Debug)]
+struct Target<C>(C);
+
+impl<C: Proximity> Proximity<Pixel<C>> for Target<C> {
type Distance = C::Distance;
- fn distance(&self, other: &[f64]) -> Self::Distance {
- self.color.distance(other)
+ fn distance(&self, other: &Pixel<C>) -> Self::Distance {
+ self.0.distance(&other.color)
}
}
-impl<C: Metric> Metric for Pixel<C> {
+impl<C: Metric> Metric<Pixel<C>> for Target<C> {}
+
+impl<C: Proximity> Proximity for Pixel<C> {
type Distance = C::Distance;
fn distance(&self, other: &Pixel<C>) -> Self::Distance {
@@ -76,13 +94,17 @@ impl<C: Metric> Metric for Pixel<C> {
}
}
-impl<C: Cartesian> Cartesian for Pixel<C> {
- fn dimensions(&self) -> usize {
- self.color.dimensions()
+impl<C: Metric> Metric for Pixel<C> {}
+
+impl<C: Coordinates> Coordinates for Pixel<C> {
+ type Value = C::Value;
+
+ fn dims(&self) -> usize {
+ self.color.dims()
}
- fn coordinate(&self, i: usize) -> f64 {
- self.color.coordinate(i)
+ fn coord(&self, i: usize) -> Self::Value {
+ self.color.coord(i)
}
}
@@ -92,43 +114,63 @@ impl<C> SoftDelete for Pixel<C> {
}
}
-impl<C: Metric<[f64]>> Metric<[f64]> for Rc<Pixel<C>> {
+impl<C: Proximity> Proximity<RcPixel<C>> for Target<C> {
type Distance = C::Distance;
- fn distance(&self, other: &[f64]) -> Self::Distance {
- (**self).distance(other)
+ fn distance(&self, other: &RcPixel<C>) -> Self::Distance {
+ self.0.distance(&other.0.color)
+ }
+}
+
+impl<C: Metric> Metric<RcPixel<C>> for Target<C> {}
+
+impl<C: Coordinates> Coordinates for Target<C> {
+ type Value = C::Value;
+
+ fn dims(&self) -> usize {
+ self.0.dims()
+ }
+
+ fn coord(&self, i: usize) -> Self::Value {
+ self.0.coord(i)
}
}
-impl<C: Metric> Metric<Rc<Pixel<C>>> for C {
+impl<T, C: CoordinateProximity<T>> CoordinateProximity<T> for Target<C> {
type Distance = C::Distance;
- fn distance(&self, other: &Rc<Pixel<C>>) -> Self::Distance {
- self.distance(&other.color)
+ fn distance_to_coords(&self, coords: &[T]) -> Self::Distance {
+ self.0.distance_to_coords(coords)
}
}
-impl<C: Metric> Metric for Rc<Pixel<C>> {
+impl<T, C: CoordinateMetric<T>> CoordinateMetric<T> for Target<C> {}
+
+impl<C: Proximity> Proximity for RcPixel<C> {
type Distance = C::Distance;
fn distance(&self, other: &Self) -> Self::Distance {
- (**self).distance(&**other)
+ (*self.0).distance(&*other.0)
}
}
-impl<C: Cartesian> Cartesian for Rc<Pixel<C>> {
- fn dimensions(&self) -> usize {
- (**self).dimensions()
+impl<C: Metric> Metric for RcPixel<C> {}
+
+impl<C: Coordinates> Coordinates for RcPixel<C> {
+ type Value = C::Value;
+
+ fn dims(&self) -> usize {
+ (*self.0).dims()
}
- fn coordinate(&self, i: usize) -> f64 {
- (**self).coordinate(i)
+ fn coord(&self, i: usize) -> Self::Value {
+ (*self.0).coord(i)
}
}
-impl<C> SoftDelete for Rc<Pixel<C>> {
+impl<C> SoftDelete for RcPixel<C> {
fn is_deleted(&self) -> bool {
- (**self).is_deleted()
+ (*self.0).is_deleted()
}
}
diff --git a/src/frontier/image.rs b/src/frontier/image.rs
index 5642297..18bf620 100644
--- a/src/frontier/image.rs
+++ b/src/frontier/image.rs
@@ -1,16 +1,17 @@
//! Frontier that targets an image.
-use super::{Frontier, Pixel};
+use super::{Frontier, Pixel, Target};
use crate::color::{ColorSpace, Rgb8};
-use crate::metric::soft::SoftKdTree;
-use crate::metric::NearestNeighbors;
+use crate::soft::SoftKdTree;
+
+use acap::NearestNeighbors;
use image::RgbImage;
/// A [Frontier] that places colors on the closest pixel of a target image.
#[derive(Debug)]
-pub struct ImageFrontier<C: ColorSpace> {
+pub struct ImageFrontier<C> {
nodes: SoftKdTree<Pixel<C>>,
width: u32,
height: u32,
@@ -58,7 +59,7 @@ impl<C: ColorSpace> Frontier for ImageFrontier<C> {
fn place(&mut self, rgb8: Rgb8) -> Option<(u32, u32)> {
let color = C::from(rgb8);
- if let Some(node) = self.nodes.nearest(&color).map(|n| n.item) {
+ if let Some(node) = self.nodes.nearest(&Target(color)).map(|n| n.item) {
let pos = node.pos;
node.delete();
diff --git a/src/frontier/mean.rs b/src/frontier/mean.rs
index 6a32b97..3c441b8 100644
--- a/src/frontier/mean.rs
+++ b/src/frontier/mean.rs
@@ -1,19 +1,19 @@
//! Mean selection frontier.
-use super::{neighbors, Frontier, Pixel};
+use super::{neighbors, Frontier, RcPixel, Target};
use crate::color::{ColorSpace, Rgb8};
-use crate::metric::soft::SoftKdForest;
-use crate::metric::NearestNeighbors;
+use crate::soft::SoftKdForest;
+
+use acap::NearestNeighbors;
use std::iter;
-use std::rc::Rc;
/// A pixel on a mean frontier.
#[derive(Debug)]
enum MeanPixel<C> {
Empty,
- Fillable(Rc<Pixel<C>>),
+ Fillable(RcPixel<C>),
Filled(C),
}
@@ -27,9 +27,10 @@ impl<C: ColorSpace> MeanPixel<C> {
}
/// A [Frontier] that looks at the average color of each pixel's neighbors.
+#[derive(Debug)]
pub struct MeanFrontier<C> {
pixels: Vec<MeanPixel<C>>,
- forest: SoftKdForest<Rc<Pixel<C>>>,
+ forest: SoftKdForest<RcPixel<C>>,
width: u32,
height: u32,
len: usize,
@@ -45,7 +46,7 @@ impl<C: ColorSpace> MeanFrontier<C> {
pixels.push(MeanPixel::Empty);
}
- let pixel0 = Rc::new(Pixel::new(x0, y0, C::from(Rgb8::from([0, 0, 0]))));
+ let pixel0 = RcPixel::new(x0, y0, C::from(Rgb8::from([0, 0, 0])));
let i = (x0 + y0 * width) as usize;
pixels[i] = MeanPixel::Fillable(pixel0.clone());
@@ -99,7 +100,7 @@ impl<C: ColorSpace> MeanFrontier<C> {
.map(MeanPixel::filled_color)
.flatten(),
);
- let pixel = Rc::new(Pixel::new(x, y, color));
+ let pixel = RcPixel::new(x, y, color);
self.pixels[i] = MeanPixel::Fillable(pixel.clone());
pixels.push(pixel);
}
@@ -135,7 +136,7 @@ impl<C: ColorSpace> Frontier for MeanFrontier<C> {
fn place(&mut self, rgb8: Rgb8) -> Option<(u32, u32)> {
let color = C::from(rgb8);
- let (x, y) = self.forest.nearest(&color).map(|n| n.item.pos)?;
+ let (x, y) = self.forest.nearest(&Target(color)).map(|n| n.item.pos)?;
self.fill(x, y, color);
diff --git a/src/frontier/min.rs b/src/frontier/min.rs
index 269f3b7..95b3321 100644
--- a/src/frontier/min.rs
+++ b/src/frontier/min.rs
@@ -1,19 +1,18 @@
//! Minimum selection frontier.
-use super::{neighbors, Frontier, Pixel};
+use super::{neighbors, Frontier, RcPixel, Target};
use crate::color::{ColorSpace, Rgb8};
-use crate::metric::soft::SoftKdForest;
-use crate::metric::NearestNeighbors;
+use crate::soft::SoftKdForest;
-use rand::Rng;
+use acap::NearestNeighbors;
-use std::rc::Rc;
+use rand::Rng;
/// A pixel on a min frontier.
#[derive(Debug)]
struct MinPixel<C> {
- pixel: Option<Rc<Pixel<C>>>,
+ pixel: Option<RcPixel<C>>,
filled: bool,
}
@@ -31,7 +30,7 @@ impl<C: ColorSpace> MinPixel<C> {
pub struct MinFrontier<C, R> {
rng: R,
pixels: Vec<MinPixel<C>>,
- forest: SoftKdForest<Rc<Pixel<C>>>,
+ forest: SoftKdForest<RcPixel<C>>,
width: u32,
height: u32,
x0: u32,
@@ -94,7 +93,7 @@ impl<C: ColorSpace, R: Rng> MinFrontier<C, R> {
return None;
}
- let rc = Rc::new(Pixel::new(x, y, color));
+ let rc = RcPixel::new(x, y, color);
pixel.pixel = Some(rc.clone());
pixel.filled = true;
@@ -144,7 +143,7 @@ impl<C: ColorSpace, R: Rng> Frontier for MinFrontier<C, R> {
let color = C::from(rgb8);
let (x, y) = self
.forest
- .nearest(&color)
+ .nearest(&Target(color))
.map(|n| n.item.pos)
.map(|(x, y)| self.free_neighbor(x, y).unwrap())
.unwrap_or((self.x0, self.y0));
diff --git a/src/main.rs b/src/main.rs
index a2f5322..ce54939 100644
--- a/src/main.rs
+++ b/src/main.rs
@@ -1,7 +1,8 @@
pub mod color;
+pub mod forest;
pub mod frontier;
pub mod hilbert;
-pub mod metric;
+pub mod soft;
use crate::color::source::{AllColors, ColorSource, ImageColors};
use crate::color::{order, ColorSpace, LabSpace, LuvSpace, Rgb8, RgbSpace};
diff --git a/src/metric.rs b/src/metric.rs
deleted file mode 100644
index d9938e4..0000000
--- a/src/metric.rs
+++ /dev/null
@@ -1,546 +0,0 @@
-//! [Metric spaces](https://en.wikipedia.org/wiki/Metric_space).
-
-pub mod approx;
-pub mod forest;
-pub mod kd;
-pub mod soft;
-pub mod vp;
-
-use std::cmp::Ordering;
-use std::collections::BinaryHeap;
-use std::iter::FromIterator;
-
-/// A wrapper that converts a partial ordering into a total one by panicking.
-#[derive(Debug, PartialEq, PartialOrd)]
-struct Ordered<T>(T);
-
-impl<T: PartialOrd> Ord for Ordered<T> {
- fn cmp(&self, other: &Self) -> Ordering {
- self.partial_cmp(other).unwrap()
- }
-}
-
-impl<T: PartialEq> Eq for Ordered<T> {}
-
-/// An [order embedding](https://en.wikipedia.org/wiki/Order_embedding) for distances.
-///
-/// Implementations of this trait must satisfy, for all non-negative distances `x` and `y`:
-///
-/// * `x == Self::from(x).into()`
-/// * `x <= y` iff `Self::from(x) <= Self::from(y)`
-///
-/// This trait exists to optimize the common case where distances can be compared more efficiently
-/// than their exact values can be computed. For example, taking the square root can be avoided
-/// when comparing Euclidean distances (see [SquaredDistance]).
-pub trait Distance: Copy + From<f64> + Into<f64> + PartialOrd {}
-
-impl Distance for f64 {}
-
-/// A squared distance, to avoid computing square roots unless absolutely necessary.
-#[derive(Debug, Clone, Copy, PartialEq, PartialOrd)]
-pub struct SquaredDistance(f64);
-
-impl SquaredDistance {
- /// Create a SquaredDistance from an already squared value.
- pub fn from_squared(value: f64) -> Self {
- Self(value)
- }
-}
-
-impl From<f64> for SquaredDistance {
- fn from(value: f64) -> Self {
- Self::from_squared(value * value)
- }
-}
-
-impl From<SquaredDistance> for f64 {
- fn from(value: SquaredDistance) -> Self {
- value.0.sqrt()
- }
-}
-
-impl Distance for SquaredDistance {}
-
-/// A [metric space](https://en.wikipedia.org/wiki/Metric_space).
-pub trait Metric<T: ?Sized = Self> {
- /// The type used to represent distances.
- type Distance: Distance;
-
- /// Computes the distance between this point and another point. This function must satisfy
- /// three conditions:
- ///
- /// * `x.distance(y) == 0` iff `x == y` (identity of indiscernibles)
- /// * `x.distance(y) == y.distance(x)` (symmetry)
- /// * `x.distance(z) <= x.distance(y) + y.distance(z)` (triangle inequality)
- fn distance(&self, other: &T) -> Self::Distance;
-}
-
-/// Blanket [Metric] implementation for references.
-impl<'a, 'b, T, U: Metric<T>> Metric<&'a T> for &'b U {
- type Distance = U::Distance;
-
- fn distance(&self, other: &&'a T) -> Self::Distance {
- (*self).distance(other)
- }
-}
-
-/// The standard [Euclidean distance](https://en.wikipedia.org/wiki/Euclidean_distance) metric.
-impl Metric for [f64] {
- type Distance = SquaredDistance;
-
- fn distance(&self, other: &Self) -> Self::Distance {
- debug_assert!(self.len() == other.len());
-
- let mut sum = 0.0;
- for i in 0..self.len() {
- let diff = self[i] - other[i];
- sum += diff * diff;
- }
-
- Self::Distance::from_squared(sum)
- }
-}
-
-/// A nearest neighbor to a target.
-#[derive(Clone, Copy, Debug, PartialEq)]
-pub struct Neighbor<T> {
- /// The found item.
- pub item: T,
- /// The distance from the target.
- pub distance: f64,
-}
-
-impl<T> Neighbor<T> {
- /// Create a new Neighbor.
- pub fn new(item: T, distance: f64) -> Self {
- Self { item, distance }
- }
-}
-
-/// A candidate nearest neighbor found during a search.
-#[derive(Debug)]
-struct Candidate<T, D> {
- item: T,
- distance: D,
-}
-
-impl<T, D: Distance> Candidate<T, D> {
- fn new<U>(target: U, item: T) -> Self
- where
- U: Metric<T, Distance = D>,
- {
- let distance = target.distance(&item);
- Self { item, distance }
- }
-
- fn into_neighbor(self) -> Neighbor<T> {
- Neighbor::new(self.item, self.distance.into())
- }
-}
-
-impl<T, D: Distance> PartialOrd for Candidate<T, D> {
- fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
- self.distance.partial_cmp(&other.distance)
- }
-}
-
-impl<T, D: Distance> Ord for Candidate<T, D> {
- fn cmp(&self, other: &Self) -> Ordering {
- self.partial_cmp(other).unwrap()
- }
-}
-
-impl<T, D: Distance> PartialEq for Candidate<T, D> {
- fn eq(&self, other: &Self) -> bool {
- self.distance.eq(&other.distance)
- }
-}
-
-impl<T, D: Distance> Eq for Candidate<T, D> {}
-
-/// Accumulates nearest neighbor search results.
-pub trait Neighborhood<T, U: Metric<T>> {
- /// Returns the target of the nearest neighbor search.
- fn target(&self) -> U;
-
- /// Check whether a distance is within this neighborhood.
- fn contains(&self, distance: f64) -> bool {
- distance < 0.0 || self.contains_distance(distance.into())
- }
-
- /// Check whether a distance is within this neighborhood.
- fn contains_distance(&self, distance: U::Distance) -> bool;
-
- /// Consider a new candidate neighbor.
- fn consider(&mut self, item: T) -> U::Distance;
-}
-
-/// A [Neighborhood] with at most one result.
-#[derive(Debug)]
-struct SingletonNeighborhood<T, U: Metric<T>> {
- /// The target of the nearest neighbor search.
- target: U,
- /// The current threshold distance to the farthest result.
- threshold: Option<U::Distance>,
- /// The current nearest neighbor, if any.
- candidate: Option<Candidate<T, U::Distance>>,
-}
-
-impl<T, U> SingletonNeighborhood<T, U>
-where
- U: Copy + Metric<T>,
-{
- /// Create a new single metric result tracker.
- ///
- /// * `target`: The target fo the nearest neighbor search.
- /// * `threshold`: The maximum allowable distance.
- fn new(target: U, threshold: Option<f64>) -> Self {
- Self {
- target,
- threshold: threshold.map(U::Distance::from),
- candidate: None,
- }
- }
-
- /// Consider a candidate.
- fn push(&mut self, candidate: Candidate<T, U::Distance>) -> U::Distance {
- let distance = candidate.distance;
-
- if self.contains_distance(distance) {
- self.threshold = Some(distance);
- self.candidate = Some(candidate);
- }
-
- distance
- }
-
- /// Convert this result into an optional neighbor.
- fn into_option(self) -> Option<Neighbor<T>> {
- self.candidate.map(Candidate::into_neighbor)
- }
-}
-
-impl<T, U> Neighborhood<T, U> for SingletonNeighborhood<T, U>
-where
- U: Copy + Metric<T>,
-{
- fn target(&self) -> U {
- self.target
- }
-
- fn contains_distance(&self, distance: U::Distance) -> bool {
- self.threshold.map(|t| distance <= t).unwrap_or(true)
- }
-
- fn consider(&mut self, item: T) -> U::Distance {
- self.push(Candidate::new(self.target, item))
- }
-}
-
-/// A [Neighborhood] of up to `k` results, using a binary heap.
-#[derive(Debug)]
-struct HeapNeighborhood<T, U: Metric<T>> {
- /// The target of the nearest neighbor search.
- target: U,
- /// The number of nearest neighbors to find.
- k: usize,
- /// The current threshold distance to the farthest result.
- threshold: Option<U::Distance>,
- /// A max-heap of the best candidates found so far.
- heap: BinaryHeap<Candidate<T, U::Distance>>,
-}
-
-impl<T, U> HeapNeighborhood<T, U>
-where
- U: Copy + Metric<T>,
-{
- /// Create a new metric result tracker.
- ///
- /// * `target`: The target fo the nearest neighbor search.
- /// * `k`: The number of nearest neighbors to find.
- /// * `threshold`: The maximum allowable distance.
- fn new(target: U, k: usize, threshold: Option<f64>) -> Self {
- Self {
- target,
- k,
- threshold: threshold.map(U::Distance::from),
- heap: BinaryHeap::with_capacity(k),
- }
- }
-
- /// Consider a candidate.
- fn push(&mut self, candidate: Candidate<T, U::Distance>) -> U::Distance {
- let distance = candidate.distance;
-
- if self.contains_distance(distance) {
- let heap = &mut self.heap;
-
- if heap.len() == self.k {
- heap.pop();
- }
-
- heap.push(candidate);
-
- if heap.len() == self.k {
- self.threshold = self.heap.peek().map(|c| c.distance)
- }
- }
-
- distance
- }
-
- /// Convert these results into a vector of neighbors.
- fn into_vec(self) -> Vec<Neighbor<T>> {
- self.heap
- .into_sorted_vec()
- .into_iter()
- .map(Candidate::into_neighbor)
- .collect()
- }
-}
-
-impl<T, U> Neighborhood<T, U> for HeapNeighborhood<T, U>
-where
- U: Copy + Metric<T>,
-{
- fn target(&self) -> U {
- self.target
- }
-
- fn contains_distance(&self, distance: U::Distance) -> bool {
- self.k > 0 && self.threshold.map(|t| distance <= t).unwrap_or(true)
- }
-
- fn consider(&mut self, item: T) -> U::Distance {
- self.push(Candidate::new(self.target, item))
- }
-}
-
-/// A [nearest neighbor search](https://en.wikipedia.org/wiki/Nearest_neighbor_search) index.
-///
-/// Type parameters:
-/// * `T`: The search result type.
-/// * `U`: The query type.
-pub trait NearestNeighbors<T, U: Metric<T> = T> {
- /// Returns the nearest neighbor to `target` (or `None` if this index is empty).
- fn nearest(&self, target: &U) -> Option<Neighbor<&T>> {
- self.search(SingletonNeighborhood::new(target, None))
- .into_option()
- }
-
- /// Returns the nearest neighbor to `target` within the distance `threshold`, if one exists.
- fn nearest_within(&self, target: &U, threshold: f64) -> Option<Neighbor<&T>> {
- self.search(SingletonNeighborhood::new(target, Some(threshold)))
- .into_option()
- }
-
- /// Returns the up to `k` nearest neighbors to `target`.
- fn k_nearest(&self, target: &U, k: usize) -> Vec<Neighbor<&T>> {
- self.search(HeapNeighborhood::new(target, k, None))
- .into_vec()
- }
-
- /// Returns the up to `k` nearest neighbors to `target` within the distance `threshold`.
- fn k_nearest_within(&self, target: &U, k: usize, threshold: f64) -> Vec<Neighbor<&T>> {
- self.search(HeapNeighborhood::new(target, k, Some(threshold)))
- .into_vec()
- }
-
- /// Search for nearest neighbors and add them to a neighborhood.
- fn search<'a, 'b, N>(&'a self, neighborhood: N) -> N
- where
- T: 'a,
- U: 'b,
- N: Neighborhood<&'a T, &'b U>;
-}
-
-/// A [NearestNeighbors] implementation that does exhaustive search.
-#[derive(Debug)]
-pub struct ExhaustiveSearch<T>(Vec<T>);
-
-impl<T> ExhaustiveSearch<T> {
- /// Create an empty ExhaustiveSearch index.
- pub fn new() -> Self {
- Self(Vec::new())
- }
-
- /// Add a new item to the index.
- pub fn push(&mut self, item: T) {
- self.0.push(item);
- }
-
- /// Get the size of this index.
- pub fn len(&self) -> usize {
- self.0.len()
- }
-
- /// Check if this index is empty.
- pub fn is_empty(&self) -> bool {
- self.0.is_empty()
- }
-}
-
-impl<T> Default for ExhaustiveSearch<T> {
- fn default() -> Self {
- Self::new()
- }
-}
-
-impl<T> FromIterator<T> for ExhaustiveSearch<T> {
- fn from_iter<I: IntoIterator<Item = T>>(items: I) -> Self {
- Self(items.into_iter().collect())
- }
-}
-
-impl<T> IntoIterator for ExhaustiveSearch<T> {
- type Item = T;
- type IntoIter = std::vec::IntoIter<T>;
-
- fn into_iter(self) -> Self::IntoIter {
- self.0.into_iter()
- }
-}
-
-impl<T> Extend<T> for ExhaustiveSearch<T> {
- fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
- for value in iter {
- self.push(value);
- }
- }
-}
-
-impl<T, U: Metric<T>> NearestNeighbors<T, U> for ExhaustiveSearch<T> {
- fn search<'a, 'b, N>(&'a self, mut neighborhood: N) -> N
- where
- T: 'a,
- U: 'b,
- N: Neighborhood<&'a T, &'b U>,
- {
- for e in &self.0 {
- neighborhood.consider(e);
- }
- neighborhood
- }
-}
-
-#[cfg(test)]
-pub mod tests {
- use super::*;
-
- use rand::prelude::*;
-
- #[derive(Clone, Copy, Debug, PartialEq)]
- pub struct Point(pub [f64; 3]);
-
- impl Metric for Point {
- type Distance = SquaredDistance;
-
- fn distance(&self, other: &Self) -> Self::Distance {
- self.0.distance(&other.0)
- }
- }
-
- /// Test a [NearestNeighbors] impl.
- pub fn test_nearest_neighbors<T, F>(from_iter: F)
- where
- T: NearestNeighbors<Point>,
- F: Fn(Vec<Point>) -> T,
- {
- test_empty(&from_iter);
- test_pythagorean(&from_iter);
- test_random_points(&from_iter);
- }
-
- fn test_empty<T, F>(from_iter: &F)
- where
- T: NearestNeighbors<Point>,
- F: Fn(Vec<Point>) -> T,
- {
- let points = Vec::new();
- let index = from_iter(points);
- let target = Point([0.0, 0.0, 0.0]);
- assert_eq!(index.nearest(&target), None);
- assert_eq!(index.nearest_within(&target, 1.0), None);
- assert!(index.k_nearest(&target, 0).is_empty());
- assert!(index.k_nearest(&target, 3).is_empty());
- assert!(index.k_nearest_within(&target, 0, 1.0).is_empty());
- assert!(index.k_nearest_within(&target, 3, 1.0).is_empty());
- }
-
- fn test_pythagorean<T, F>(from_iter: &F)
- where
- T: NearestNeighbors<Point>,
- F: Fn(Vec<Point>) -> T,
- {
- let points = vec![
- Point([3.0, 4.0, 0.0]),
- Point([5.0, 0.0, 12.0]),
- Point([0.0, 8.0, 15.0]),
- Point([1.0, 2.0, 2.0]),
- Point([2.0, 3.0, 6.0]),
- Point([4.0, 4.0, 7.0]),
- ];
- let index = from_iter(points);
- let target = Point([0.0, 0.0, 0.0]);
-
- assert_eq!(
- index.nearest(&target),
- Some(Neighbor::new(&Point([1.0, 2.0, 2.0]), 3.0))
- );
-
- assert_eq!(index.nearest_within(&target, 2.0), None);
- assert_eq!(
- index.nearest_within(&target, 4.0),
- Some(Neighbor::new(&Point([1.0, 2.0, 2.0]), 3.0))
- );
-
- assert!(index.k_nearest(&target, 0).is_empty());
- assert_eq!(
- index.k_nearest(&target, 3),
- vec![
- Neighbor::new(&Point([1.0, 2.0, 2.0]), 3.0),
- Neighbor::new(&Point([3.0, 4.0, 0.0]), 5.0),
- Neighbor::new(&Point([2.0, 3.0, 6.0]), 7.0),
- ]
- );
-
- assert!(index.k_nearest(&target, 0).is_empty());
- assert_eq!(
- index.k_nearest_within(&target, 3, 6.0),
- vec![
- Neighbor::new(&Point([1.0, 2.0, 2.0]), 3.0),
- Neighbor::new(&Point([3.0, 4.0, 0.0]), 5.0),
- ]
- );
- assert_eq!(
- index.k_nearest_within(&target, 3, 8.0),
- vec![
- Neighbor::new(&Point([1.0, 2.0, 2.0]), 3.0),
- Neighbor::new(&Point([3.0, 4.0, 0.0]), 5.0),
- Neighbor::new(&Point([2.0, 3.0, 6.0]), 7.0),
- ]
- );
- }
-
- fn test_random_points<T, F>(from_iter: &F)
- where
- T: NearestNeighbors<Point>,
- F: Fn(Vec<Point>) -> T,
- {
- let mut points = Vec::new();
- for _ in 0..255 {
- points.push(Point([random(), random(), random()]));
- }
- let target = Point([random(), random(), random()]);
-
- let eindex = ExhaustiveSearch::from_iter(points.clone());
- let index = from_iter(points);
-
- assert_eq!(index.k_nearest(&target, 3), eindex.k_nearest(&target, 3));
- }
-
- #[test]
- fn test_exhaustive_index() {
- test_nearest_neighbors(ExhaustiveSearch::from_iter);
- }
-}
diff --git a/src/metric/approx.rs b/src/metric/approx.rs
deleted file mode 100644
index c23f9c7..0000000
--- a/src/metric/approx.rs
+++ /dev/null
@@ -1,131 +0,0 @@
-//! [Approximate nearest neighbor search](https://en.wikipedia.org/wiki/Nearest_neighbor_search#Approximate_nearest_neighbor).
-
-use super::{Metric, NearestNeighbors, Neighborhood};
-
-/// An approximate [Neighborhood], for approximate nearest neighbor searches.
-#[derive(Debug)]
-struct ApproximateNeighborhood<N> {
- inner: N,
- ratio: f64,
- limit: usize,
-}
-
-impl<N> ApproximateNeighborhood<N> {
- fn new(inner: N, ratio: f64, limit: usize) -> Self {
- Self {
- inner,
- ratio,
- limit,
- }
- }
-}
-
-impl<T, U, N> Neighborhood<T, U> for ApproximateNeighborhood<N>
-where
- U: Metric<T>,
- N: Neighborhood<T, U>,
-{
- fn target(&self) -> U {
- self.inner.target()
- }
-
- fn contains(&self, distance: f64) -> bool {
- if self.limit > 0 {
- self.inner.contains(self.ratio * distance)
- } else {
- false
- }
- }
-
- fn contains_distance(&self, distance: U::Distance) -> bool {
- self.contains(self.ratio * distance.into())
- }
-
- fn consider(&mut self, item: T) -> U::Distance {
- self.limit = self.limit.saturating_sub(1);
- self.inner.consider(item)
- }
-}
-
-/// An [approximate nearest neighbor search](https://en.wikipedia.org/wiki/Nearest_neighbor_search#Approximate_nearest_neighbor)
-/// index.
-///
-/// This wrapper converts an exact nearest neighbor search algorithm into an approximate one by
-/// modifying the behavior of [Neighborhood::contains]. The approximation is controlled by two
-/// parameters:
-///
-/// * `ratio`: The [nearest neighbor distance ratio](https://en.wikipedia.org/wiki/Nearest_neighbor_search#Nearest_neighbor_distance_ratio),
-/// which controls how much closer new candidates must be to be considered. For example, a ratio
-/// of 2.0 means that a neighbor must be less than half of the current threshold away to be
-/// considered. A ratio of 1.0 means an exact search.
-///
-/// * `limit`: A limit on the number of candidates to consider. Typical nearest neighbor algorithms
-/// find a close match quickly, so setting a limit bounds the worst-case search time while keeping
-/// good accuracy.
-#[derive(Debug)]
-pub struct ApproximateSearch<T> {
- inner: T,
- ratio: f64,
- limit: usize,
-}
-
-impl<T> ApproximateSearch<T> {
- /// Create a new ApproximateSearch index.
- ///
- /// * `inner`: The [NearestNeighbors] implementation to wrap.
- /// * `ratio`: The nearest neighbor distance ratio.
- /// * `limit`: The maximum number of results to consider.
- pub fn new(inner: T, ratio: f64, limit: usize) -> Self {
- Self {
- inner,
- ratio,
- limit,
- }
- }
-}
-
-impl<T, U, V> NearestNeighbors<T, U> for ApproximateSearch<V>
-where
- U: Metric<T>,
- V: NearestNeighbors<T, U>,
-{
- fn search<'a, 'b, N>(&'a self, neighborhood: N) -> N
- where
- T: 'a,
- U: 'b,
- N: Neighborhood<&'a T, &'b U>,
- {
- self.inner
- .search(ApproximateNeighborhood::new(
- neighborhood,
- self.ratio,
- self.limit,
- ))
- .inner
- }
-}
-
-#[cfg(test)]
-mod tests {
- use super::*;
-
- use crate::metric::kd::KdTree;
- use crate::metric::tests::test_nearest_neighbors;
- use crate::metric::vp::VpTree;
-
- use std::iter::FromIterator;
-
- #[test]
- fn test_approx_kd_tree() {
- test_nearest_neighbors(|iter| {
- ApproximateSearch::new(KdTree::from_iter(iter), 1.0, std::usize::MAX)
- });
- }
-
- #[test]
- fn test_approx_vp_tree() {
- test_nearest_neighbors(|iter| {
- ApproximateSearch::new(VpTree::from_iter(iter), 1.0, std::usize::MAX)
- });
- }
-}
diff --git a/src/metric/kd.rs b/src/metric/kd.rs
deleted file mode 100644
index 6ea3809..0000000
--- a/src/metric/kd.rs
+++ /dev/null
@@ -1,224 +0,0 @@
-//! [k-d trees](https://en.wikipedia.org/wiki/K-d_tree).
-
-use super::{Metric, NearestNeighbors, Neighborhood, Ordered};
-
-use std::iter::FromIterator;
-
-/// A point in Cartesian space.
-pub trait Cartesian: Metric<[f64]> {
- /// Returns the number of dimensions necessary to describe this point.
- fn dimensions(&self) -> usize;
-
- /// Returns the value of the `i`th coordinate of this point (`i < self.dimensions()`).
- fn coordinate(&self, i: usize) -> f64;
-}
-
-/// Blanket [Cartesian] implementation for references.
-impl<'a, T: Cartesian> Cartesian for &'a T {
- fn dimensions(&self) -> usize {
- (*self).dimensions()
- }
-
- fn coordinate(&self, i: usize) -> f64 {
- (*self).coordinate(i)
- }
-}
-
-/// Blanket [Metric<[f64]>](Metric) implementation for [Cartesian] references.
-impl<'a, T: Cartesian> Metric<[f64]> for &'a T {
- type Distance = T::Distance;
-
- fn distance(&self, other: &[f64]) -> Self::Distance {
- (*self).distance(other)
- }
-}
-
-/// Standard cartesian space.
-impl Cartesian for [f64] {
- fn dimensions(&self) -> usize {
- self.len()
- }
-
- fn coordinate(&self, i: usize) -> f64 {
- self[i]
- }
-}
-
-/// Marker trait for cartesian metric spaces.
-pub trait CartesianMetric<T: ?Sized = Self>:
- Cartesian + Metric<T, Distance = <Self as Metric<[f64]>>::Distance>
-{
-}
-
-/// Blanket [CartesianMetric] implementation for cartesian spaces with compatible metric distance
-/// types.
-impl<T, U> CartesianMetric<T> for U
-where
- T: ?Sized,
- U: ?Sized + Cartesian + Metric<T, Distance = <U as Metric<[f64]>>::Distance>,
-{
-}
-
-/// A node in a k-d tree.
-#[derive(Debug)]
-struct KdNode<T> {
- /// The value stored in this node.
- item: T,
- /// The size of the left subtree.
- left_len: usize,
-}
-
-impl<T: Cartesian> KdNode<T> {
- /// Create a new KdNode.
- fn new(item: T) -> Self {
- Self { item, left_len: 0 }
- }
-
- /// Build a k-d tree recursively.
- fn build(slice: &mut [KdNode<T>], i: usize) {
- if slice.is_empty() {
- return;
- }
-
- slice.sort_unstable_by_key(|n| Ordered(n.item.coordinate(i)));
-
- let mid = slice.len() / 2;
- slice.swap(0, mid);
-
- let (node, children) = slice.split_first_mut().unwrap();
- let (left, right) = children.split_at_mut(mid);
- node.left_len = left.len();
-
- let j = (i + 1) % node.item.dimensions();
- Self::build(left, j);
- Self::build(right, j);
- }
-
- /// Recursively search for nearest neighbors.
- fn recurse<'a, U, N>(
- slice: &'a [KdNode<T>],
- i: usize,
- closest: &mut [f64],
- neighborhood: &mut N,
- ) where
- T: 'a,
- U: CartesianMetric<&'a T>,
- N: Neighborhood<&'a T, U>,
- {
- let (node, children) = slice.split_first().unwrap();
- neighborhood.consider(&node.item);
-
- let target = neighborhood.target();
- let ti = target.coordinate(i);
- let ni = node.item.coordinate(i);
- let j = (i + 1) % node.item.dimensions();
-
- let (left, right) = children.split_at(node.left_len);
- let (near, far) = if ti <= ni {
- (left, right)
- } else {
- (right, left)
- };
-
- if !near.is_empty() {
- Self::recurse(near, j, closest, neighborhood);
- }
-
- if !far.is_empty() {
- let saved = closest[i];
- closest[i] = ni;
- if neighborhood.contains_distance(target.distance(closest)) {
- Self::recurse(far, j, closest, neighborhood);
- }
- closest[i] = saved;
- }
- }
-}
-
-/// A [k-d tree](https://en.wikipedia.org/wiki/K-d_tree).
-#[derive(Debug)]
-pub struct KdTree<T>(Vec<KdNode<T>>);
-
-impl<T: Cartesian> FromIterator<T> for KdTree<T> {
- /// Create a new k-d tree from a set of points.
- fn from_iter<I: IntoIterator<Item = T>>(items: I) -> Self {
- let mut nodes: Vec<_> = items.into_iter().map(KdNode::new).collect();
- KdNode::build(nodes.as_mut_slice(), 0);
- Self(nodes)
- }
-}
-
-impl<T, U> NearestNeighbors<T, U> for KdTree<T>
-where
- T: Cartesian,
- U: CartesianMetric<T>,
-{
- fn search<'a, 'b, N>(&'a self, mut neighborhood: N) -> N
- where
- T: 'a,
- U: 'b,
- N: Neighborhood<&'a T, &'b U>,
- {
- if !self.0.is_empty() {
- let target = neighborhood.target();
- let dims = target.dimensions();
- let mut closest: Vec<_> = (0..dims).map(|i| target.coordinate(i)).collect();
-
- KdNode::recurse(&self.0, 0, &mut closest, &mut neighborhood);
- }
-
- neighborhood
- }
-}
-
-/// An iterator that the moves values out of a k-d tree.
-#[derive(Debug)]
-pub struct IntoIter<T>(std::vec::IntoIter<KdNode<T>>);
-
-impl<T> Iterator for IntoIter<T> {
- type Item = T;
-
- fn next(&mut self) -> Option<T> {
- self.0.next().map(|n| n.item)
- }
-}
-
-impl<T> IntoIterator for KdTree<T> {
- type Item = T;
- type IntoIter = IntoIter<T>;
-
- fn into_iter(self) -> Self::IntoIter {
- IntoIter(self.0.into_iter())
- }
-}
-
-#[cfg(test)]
-mod tests {
- use super::*;
-
- use crate::metric::tests::{test_nearest_neighbors, Point};
- use crate::metric::SquaredDistance;
-
- impl Metric<[f64]> for Point {
- type Distance = SquaredDistance;
-
- fn distance(&self, other: &[f64]) -> Self::Distance {
- self.0.distance(other)
- }
- }
-
- impl Cartesian for Point {
- fn dimensions(&self) -> usize {
- self.0.dimensions()
- }
-
- fn coordinate(&self, i: usize) -> f64 {
- self.0.coordinate(i)
- }
- }
-
- #[test]
- fn test_kd_tree() {
- test_nearest_neighbors(KdTree::from_iter);
- }
-}
diff --git a/src/metric/vp.rs b/src/metric/vp.rs
deleted file mode 100644
index d6e05df..0000000
--- a/src/metric/vp.rs
+++ /dev/null
@@ -1,137 +0,0 @@
-//! [Vantage-point trees](https://en.wikipedia.org/wiki/Vantage-point_tree).
-
-use super::{Metric, NearestNeighbors, Neighborhood, Ordered};
-
-use std::iter::FromIterator;
-
-/// A node in a VP tree.
-#[derive(Debug)]
-struct VpNode<T> {
- /// The vantage point itself.
- item: T,
- /// The radius of this node.
- radius: f64,
- /// The size of the subtree inside the radius.
- inside_len: usize,
-}
-
-impl<T: Metric> VpNode<T> {
- /// Create a new VpNode.
- fn new(item: T) -> Self {
- Self {
- item,
- radius: 0.0,
- inside_len: 0,
- }
- }
-
- /// Build a VP tree recursively.
- fn build(slice: &mut [VpNode<T>]) {
- if let Some((node, children)) = slice.split_first_mut() {
- let item = &node.item;
- children.sort_by_cached_key(|n| Ordered(item.distance(&n.item)));
-
- let (inside, outside) = children.split_at_mut(children.len() / 2);
- if let Some(last) = inside.last() {
- node.radius = item.distance(&last.item).into();
- }
- node.inside_len = inside.len();
-
- Self::build(inside);
- Self::build(outside);
- }
- }
-
- /// Recursively search for nearest neighbors.
- fn recurse<'a, U, N>(slice: &'a [VpNode<T>], neighborhood: &mut N)
- where
- T: 'a,
- U: Metric<&'a T>,
- N: Neighborhood<&'a T, U>,
- {
- let (node, children) = slice.split_first().unwrap();
- let (inside, outside) = children.split_at(node.inside_len);
-
- let distance = neighborhood.consider(&node.item).into();
-
- if distance <= node.radius {
- if !inside.is_empty() && neighborhood.contains(distance - node.radius) {
- Self::recurse(inside, neighborhood);
- }
- if !outside.is_empty() && neighborhood.contains(node.radius - distance) {
- Self::recurse(outside, neighborhood);
- }
- } else {
- if !outside.is_empty() && neighborhood.contains(node.radius - distance) {
- Self::recurse(outside, neighborhood);
- }
- if !inside.is_empty() && neighborhood.contains(distance - node.radius) {
- Self::recurse(inside, neighborhood);
- }
- }
- }
-}
-
-/// A [vantage-point tree](https://en.wikipedia.org/wiki/Vantage-point_tree).
-#[derive(Debug)]
-pub struct VpTree<T>(Vec<VpNode<T>>);
-
-impl<T: Metric> FromIterator<T> for VpTree<T> {
- fn from_iter<I: IntoIterator<Item = T>>(items: I) -> Self {
- let mut nodes: Vec<_> = items.into_iter().map(VpNode::new).collect();
- VpNode::build(nodes.as_mut_slice());
- Self(nodes)
- }
-}
-
-impl<T, U> NearestNeighbors<T, U> for VpTree<T>
-where
- T: Metric,
- U: Metric<T>,
-{
- fn search<'a, 'b, N>(&'a self, mut neighborhood: N) -> N
- where
- T: 'a,
- U: 'b,
- N: Neighborhood<&'a T, &'b U>,
- {
- if !self.0.is_empty() {
- VpNode::recurse(&self.0, &mut neighborhood);
- }
-
- neighborhood
- }
-}
-
-/// An iterator that moves values out of a VP tree.
-#[derive(Debug)]
-pub struct IntoIter<T>(std::vec::IntoIter<VpNode<T>>);
-
-impl<T> Iterator for IntoIter<T> {
- type Item = T;
-
- fn next(&mut self) -> Option<T> {
- self.0.next().map(|n| n.item)
- }
-}
-
-impl<T> IntoIterator for VpTree<T> {
- type Item = T;
- type IntoIter = IntoIter<T>;
-
- fn into_iter(self) -> Self::IntoIter {
- IntoIter(self.0.into_iter())
- }
-}
-
-#[cfg(test)]
-mod tests {
- use super::*;
-
- use crate::metric::tests::test_nearest_neighbors;
-
- #[test]
- fn test_vp_tree() {
- test_nearest_neighbors(VpTree::from_iter);
- }
-}
diff --git a/src/metric/soft.rs b/src/soft.rs
index d443bfd..3edaa10 100644
--- a/src/metric/soft.rs
+++ b/src/soft.rs
@@ -1,9 +1,11 @@
//! [Soft deletion](https://en.wiktionary.org/wiki/soft_deletion) for nearest neighbor search.
use super::forest::{KdForest, VpForest};
-use super::kd::KdTree;
-use super::vp::VpTree;
-use super::{Metric, NearestNeighbors, Neighborhood};
+
+use acap::distance::Proximity;
+use acap::kd::FlatKdTree;
+use acap::vp::FlatVpTree;
+use acap::{NearestNeighbors, Neighborhood};
use std::iter;
use std::iter::FromIterator;
@@ -26,25 +28,24 @@ impl<'a, T: SoftDelete> SoftDelete for &'a T {
#[derive(Debug)]
struct SoftNeighborhood<N>(N);
-impl<T, U, N> Neighborhood<T, U> for SoftNeighborhood<N>
+impl<K, V, N> Neighborhood<K, V> for SoftNeighborhood<N>
where
- T: SoftDelete,
- U: Metric<T>,
- N: Neighborhood<T, U>,
+ V: SoftDelete,
+ K: Proximity<V>,
+ N: Neighborhood<K, V>,
{
- fn target(&self) -> U {
+ fn target(&self) -> K {
self.0.target()
}
- fn contains(&self, distance: f64) -> bool {
+ fn contains<D>(&self, distance: D) -> bool
+ where
+ D: PartialOrd<K::Distance>
+ {
self.0.contains(distance)
}
- fn contains_distance(&self, distance: U::Distance) -> bool {
- self.0.contains_distance(distance)
- }
-
- fn consider(&mut self, item: T) -> U::Distance {
+ fn consider(&mut self, item: V) -> K::Distance {
if item.is_deleted() {
self.target().distance(&item)
} else {
@@ -113,17 +114,17 @@ impl<T: IntoIterator> IntoIterator for SoftSearch<T> {
}
}
-impl<T, U, V> NearestNeighbors<T, U> for SoftSearch<V>
+impl<K, V, T> NearestNeighbors<K, V> for SoftSearch<T>
where
- T: SoftDelete,
- U: Metric<T>,
- V: NearestNeighbors<T, U>,
+ K: Proximity<V>,
+ V: SoftDelete,
+ T: NearestNeighbors<K, V>,
{
- fn search<'a, 'b, N>(&'a self, neighborhood: N) -> N
+ fn search<'k, 'v, N>(&'v self, neighborhood: N) -> N
where
- T: 'a,
- U: 'b,
- N: Neighborhood<&'a T, &'b U>,
+ K: 'k,
+ V: 'v,
+ N: Neighborhood<&'k K, &'v V>
{
self.0.search(SoftNeighborhood(neighborhood)).0
}
@@ -133,39 +134,41 @@ where
pub type SoftKdForest<T> = SoftSearch<KdForest<T>>;
/// A k-d tree that supports soft deletes.
-pub type SoftKdTree<T> = SoftSearch<KdTree<T>>;
+pub type SoftKdTree<T> = SoftSearch<FlatKdTree<T>>;
/// A VP forest that supports soft deletes.
pub type SoftVpForest<T> = SoftSearch<VpForest<T>>;
/// A VP tree that supports soft deletes.
-pub type SoftVpTree<T> = SoftSearch<VpTree<T>>;
+pub type SoftVpTree<T> = SoftSearch<FlatVpTree<T>>;
#[cfg(test)]
mod tests {
use super::*;
- use crate::metric::kd::Cartesian;
- use crate::metric::tests::Point;
- use crate::metric::Neighbor;
+ use acap::coords::Coordinates;
+ use acap::euclid::{euclidean_distance, Euclidean, EuclideanDistance};
+ use acap::Neighbor;
+
+ type Point = Euclidean<[f32; 3]>;
#[derive(Debug, PartialEq)]
struct SoftPoint {
- point: Point,
+ point: [f32; 3],
deleted: bool,
}
impl SoftPoint {
- fn new(x: f64, y: f64, z: f64) -> Self {
+ fn new(x: f32, y: f32, z: f32) -> Self {
Self {
- point: Point([x, y, z]),
+ point: [x, y, z],
deleted: false,
}
}
- fn deleted(x: f64, y: f64, z: f64) -> Self {
+ fn deleted(x: f32, y: f32, z: f32) -> Self {
Self {
- point: Point([x, y, z]),
+ point: [x, y, z],
deleted: true,
}
}
@@ -177,55 +180,49 @@ mod tests {
}
}
- impl Metric for SoftPoint {
- type Distance = <Point as Metric>::Distance;
+ impl Proximity for SoftPoint {
+ type Distance = EuclideanDistance<f32>;
fn distance(&self, other: &Self) -> Self::Distance {
- self.point.distance(&other.point)
+ euclidean_distance(&self.point, &other.point)
}
}
- impl Metric<[f64]> for SoftPoint {
- type Distance = <Point as Metric>::Distance;
-
- fn distance(&self, other: &[f64]) -> Self::Distance {
- self.point.distance(other)
- }
- }
+ impl Coordinates for SoftPoint {
+ type Value = <Point as Coordinates>::Value;
- impl Cartesian for SoftPoint {
- fn dimensions(&self) -> usize {
- self.point.dimensions()
+ fn dims(&self) -> usize {
+ self.point.dims()
}
- fn coordinate(&self, i: usize) -> f64 {
- self.point.coordinate(i)
+ fn coord(&self, i: usize) -> Self::Value {
+ self.point.coord(i)
}
}
- impl Metric<SoftPoint> for Point {
- type Distance = <Point as Metric>::Distance;
+ impl Proximity<SoftPoint> for Point {
+ type Distance = EuclideanDistance<f32>;
fn distance(&self, other: &SoftPoint) -> Self::Distance {
- self.distance(&other.point)
+ euclidean_distance(&self, &other.point)
}
}
fn test_index<T>(index: &T)
where
- T: NearestNeighbors<SoftPoint, Point>,
+ T: NearestNeighbors<Point, SoftPoint>,
{
- let target = Point([0.0, 0.0, 0.0]);
+ let target = Euclidean([0.0, 0.0, 0.0]);
assert_eq!(
- index.nearest(&target),
- Some(Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0))
+ index.nearest(&target).expect("No nearest neighbor found"),
+ Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0)
);
assert_eq!(index.nearest_within(&target, 2.0), None);
assert_eq!(
- index.nearest_within(&target, 4.0),
- Some(Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0))
+ index.nearest_within(&target, 4.0).expect("No nearest neighbor found within 4.0"),
+ Neighbor::new(&SoftPoint::new(1.0, 2.0, 2.0), 3.0)
);
assert_eq!(
@@ -259,7 +256,7 @@ mod tests {
T: Extend<SoftPoint>,
T: FromIterator<SoftPoint>,
T: IntoIterator<Item = SoftPoint>,
- T: NearestNeighbors<SoftPoint, Point>,
+ T: NearestNeighbors<Point, SoftPoint>,
{
let points = vec![
SoftPoint::deleted(0.0, 0.0, 0.0),