1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
|
/*************************************************************************
* Copyright (C) 2010-2011 Tavian Barnes <tavianator@tavianator.com> *
* *
* This file is part of The Dimension Library. *
* *
* The Dimension Library is free software; you can redistribute it and/ *
* or modify it under the terms of the GNU Lesser General Public License *
* as published by the Free Software Foundation; either version 3 of the *
* License, or (at your option) any later version. *
* *
* The Dimension Library is distributed in the hope that it will be *
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty *
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with this program. If not, see *
* <http://www.gnu.org/licenses/>. *
*************************************************************************/
/**
* @file
* Priority R-tree implementation. These are the hottest code paths in
* libdimension.
*/
#include "dimension-impl.h"
#include <pthread.h>
#include <stdlib.h>
/** Number of children per PR-node. */
#define DMNSN_PRTREE_B 8
/** Number of priority leaves per pseudo-PR-node (must be 2*ndimensions). */
#define DMNSN_PSEUDO_B 6
/** A flat node for storing in an array for fast pre-order traversal. */
typedef struct dmnsn_flat_prnode {
dmnsn_bounding_box bounding_box;
dmnsn_object *object;
size_t skip;
} dmnsn_flat_prnode;
/** The side of the split that a node ended up on. */
typedef enum dmnsn_prnode_location {
DMNSN_PRTREE_LEAF, /**< Priority leaf. */
DMNSN_PRTREE_LEFT, /**< Left child. */
DMNSN_PRTREE_RIGHT /**< Right child. */
} dmnsn_prnode_location;
/** Pseudo PR-tree node. */
typedef struct dmnsn_prnode {
dmnsn_bounding_box bounding_box;
dmnsn_object *object;
struct dmnsn_prnode *children[DMNSN_PRTREE_B];
dmnsn_prnode_location location;
} dmnsn_prnode;
/** Construct an empty PR-node. */
static inline dmnsn_prnode *
dmnsn_new_prnode()
{
dmnsn_prnode *node = dmnsn_malloc(sizeof(dmnsn_prnode));
node->bounding_box = dmnsn_zero_bounding_box();
node->object = NULL;
node->location = DMNSN_PRTREE_LEFT; /* Mustn't be _LEAF */
for (size_t i = 0; i < DMNSN_PRTREE_B; ++i) {
node->children[i] = NULL;
}
return node;
}
/** Free a non-flat PR-tree. */
static void
dmnsn_delete_prnode(dmnsn_prnode *node)
{
if (node) {
for (size_t i = 0; i < DMNSN_PRTREE_B && node->children[i]; ++i) {
dmnsn_delete_prnode(node->children[i]);
}
dmnsn_free(node);
}
}
/** Expand a node to contain the bounding box \p box. */
static void
dmnsn_prnode_swallow(dmnsn_prnode *node, dmnsn_bounding_box box)
{
node->bounding_box.min = dmnsn_vector_min(node->bounding_box.min, box.min);
node->bounding_box.max = dmnsn_vector_max(node->bounding_box.max, box.max);
}
/** Comparator types. */
enum {
DMNSN_XMIN,
DMNSN_YMIN,
DMNSN_ZMIN,
DMNSN_XMAX,
DMNSN_YMAX,
DMNSN_ZMAX
};
/** Get a coordinate of the bounding box of a node. */
static inline double
dmnsn_get_coordinate(const dmnsn_prnode * const *node, int comparator)
{
switch (comparator) {
case DMNSN_XMIN:
return (*node)->bounding_box.min.x;
case DMNSN_YMIN:
return (*node)->bounding_box.min.y;
case DMNSN_ZMIN:
return (*node)->bounding_box.min.z;
case DMNSN_XMAX:
return -(*node)->bounding_box.max.x;
case DMNSN_YMAX:
return -(*node)->bounding_box.max.y;
case DMNSN_ZMAX:
return -(*node)->bounding_box.max.z;
default:
dmnsn_assert(false, "Invalid comparator.");
return 0.0; /* Shut up compiler */
}
}
/* List sorting comparators */
static int
dmnsn_xmin_comp(const void *l, const void *r)
{
double lval = dmnsn_get_coordinate(l, DMNSN_XMIN);
double rval = dmnsn_get_coordinate(r, DMNSN_XMIN);
return (lval > rval) - (lval < rval);
}
static int
dmnsn_ymin_comp(const void *l, const void *r)
{
double lval = dmnsn_get_coordinate(l, DMNSN_YMIN);
double rval = dmnsn_get_coordinate(r, DMNSN_YMIN);
return (lval > rval) - (lval < rval);
}
static int
dmnsn_zmin_comp(const void *l, const void *r)
{
double lval = dmnsn_get_coordinate(l, DMNSN_ZMIN);
double rval = dmnsn_get_coordinate(r, DMNSN_ZMIN);
return (lval > rval) - (lval < rval);
}
static int
dmnsn_xmax_comp(const void *l, const void *r)
{
double lval = dmnsn_get_coordinate(l, DMNSN_XMAX);
double rval = dmnsn_get_coordinate(r, DMNSN_XMAX);
return (lval > rval) - (lval < rval);
}
static int
dmnsn_ymax_comp(const void *l, const void *r)
{
double lval = dmnsn_get_coordinate(l, DMNSN_YMAX);
double rval = dmnsn_get_coordinate(r, DMNSN_YMAX);
return (lval > rval) - (lval < rval);
}
static int
dmnsn_zmax_comp(const void *l, const void *r)
{
double lval = dmnsn_get_coordinate(l, DMNSN_ZMAX);
double rval = dmnsn_get_coordinate(r, DMNSN_ZMAX);
return (lval > rval) - (lval < rval);
}
/** All comparators. */
static dmnsn_array_comparator_fn *const dmnsn_comparators[DMNSN_PSEUDO_B] = {
[DMNSN_XMIN] = dmnsn_xmin_comp,
[DMNSN_YMIN] = dmnsn_ymin_comp,
[DMNSN_ZMIN] = dmnsn_zmin_comp,
[DMNSN_XMAX] = dmnsn_xmax_comp,
[DMNSN_YMAX] = dmnsn_ymax_comp,
[DMNSN_ZMAX] = dmnsn_zmax_comp
};
/** Add the priority leaves for this level. */
static void
dmnsn_add_priority_leaves(dmnsn_array *sorted_leaves[DMNSN_PSEUDO_B],
dmnsn_array *new_leaves)
{
for (size_t i = 0; i < DMNSN_PSEUDO_B; ++i) {
dmnsn_prnode *leaf = NULL;
dmnsn_prnode **leaves = dmnsn_array_first(sorted_leaves[i]);
for (size_t j = 0, count = 0, size = dmnsn_array_size(sorted_leaves[i]);
j < size && count < DMNSN_PRTREE_B;
++j)
{
/* Skip all the previously found extreme nodes */
if (leaves[j]->location == DMNSN_PRTREE_LEAF) {
continue;
}
if (!leaf) {
leaf = dmnsn_new_prnode();
}
leaves[j]->location = DMNSN_PRTREE_LEAF;
leaf->children[count++] = leaves[j];
dmnsn_prnode_swallow(leaf, leaves[j]->bounding_box);
}
if (leaf) {
dmnsn_array_push(new_leaves, &leaf);
} else {
return;
}
}
}
/** Split the sorted lists into the left and right subtrees. */
static bool
dmnsn_split_sorted_leaves(dmnsn_array *sorted_leaves[DMNSN_PSEUDO_B],
dmnsn_array *right_sorted_leaves[DMNSN_PSEUDO_B],
size_t i)
{
/* Get rid of the extreme nodes */
dmnsn_prnode **leaves = dmnsn_array_first(sorted_leaves[i]);
size_t j, skip;
for (j = 0, skip = 0; j < dmnsn_array_size(sorted_leaves[i]); ++j) {
if (leaves[j]->location == DMNSN_PRTREE_LEAF) {
++skip;
} else {
leaves[j - skip] = leaves[j];
}
}
dmnsn_array_resize(sorted_leaves[i], j - skip);
if (dmnsn_array_size(sorted_leaves[i]) == 0) {
return false;
}
/* Split the appropriate list and mark the left and right child nodes */
right_sorted_leaves[i] = dmnsn_array_split(sorted_leaves[i]);
DMNSN_ARRAY_FOREACH (dmnsn_prnode **, node, sorted_leaves[i]) {
(*node)->location = DMNSN_PRTREE_LEFT;
}
DMNSN_ARRAY_FOREACH (dmnsn_prnode **, node, right_sorted_leaves[i]) {
(*node)->location = DMNSN_PRTREE_RIGHT;
}
/* Split the rest of the lists */
for (size_t j = 0; j < DMNSN_PSEUDO_B; ++j) {
if (j != i) {
right_sorted_leaves[j] = dmnsn_new_array(sizeof(dmnsn_prnode *));
dmnsn_prnode **leaves = dmnsn_array_first(sorted_leaves[j]);
size_t k, skip;
for (k = 0, skip = 0; k < dmnsn_array_size(sorted_leaves[j]); ++k) {
if (leaves[k]->location == DMNSN_PRTREE_LEAF) {
++skip;
} else if (leaves[k]->location == DMNSN_PRTREE_RIGHT) {
dmnsn_array_push(right_sorted_leaves[j], &leaves[k]);
++skip;
} else {
leaves[k - skip] = leaves[k];
}
}
dmnsn_array_resize(sorted_leaves[j], k - skip);
}
}
return true;
}
/** Recursively constructs an implicit pseudo-PR-tree and collects the priority
leaves. */
static void
dmnsn_priority_leaves_recursive(dmnsn_array *sorted_leaves[DMNSN_PSEUDO_B],
dmnsn_array *new_leaves,
int comparator)
{
dmnsn_add_priority_leaves(sorted_leaves, new_leaves);
dmnsn_array *right_sorted_leaves[DMNSN_PSEUDO_B];
if (dmnsn_split_sorted_leaves(sorted_leaves, right_sorted_leaves, comparator))
{
dmnsn_priority_leaves_recursive(right_sorted_leaves, new_leaves,
(comparator + 1)%DMNSN_PSEUDO_B);
for (size_t i = 0; i < DMNSN_PSEUDO_B; ++i) {
dmnsn_delete_array(right_sorted_leaves[i]);
}
dmnsn_priority_leaves_recursive(sorted_leaves, new_leaves,
(comparator + 1)%DMNSN_PSEUDO_B);
}
}
/** Constructs an implicit pseudo-PR-tree and returns the priority leaves. */
static dmnsn_array *
dmnsn_priority_leaves(const dmnsn_array *leaves)
{
dmnsn_array *sorted_leaves[DMNSN_PSEUDO_B];
for (size_t i = 0; i < DMNSN_PSEUDO_B; ++i) {
sorted_leaves[i] = dmnsn_array_copy(leaves);
dmnsn_array_sort(sorted_leaves[i], dmnsn_comparators[i]);
}
dmnsn_array *new_leaves = dmnsn_new_array(sizeof(dmnsn_prnode *));
dmnsn_priority_leaves_recursive(sorted_leaves, new_leaves, 0);
for (size_t i = 0; i < DMNSN_PSEUDO_B; ++i) {
dmnsn_delete_array(sorted_leaves[i]);
}
return new_leaves;
}
/** Construct a non-flat PR-tree. */
static dmnsn_prnode *
dmnsn_make_prtree(const dmnsn_array *objects)
{
if (dmnsn_array_size(objects) == 0) {
return NULL;
}
/* Make the initial array of leaves */
dmnsn_array *leaves = dmnsn_new_array(sizeof(dmnsn_prnode *));
DMNSN_ARRAY_FOREACH (dmnsn_object **, object, objects) {
dmnsn_prnode *node = dmnsn_new_prnode();
node->bounding_box = (*object)->bounding_box;
node->object = *object;
dmnsn_array_push(leaves, &node);
}
while (dmnsn_array_size(leaves) > 1) {
dmnsn_array *new_leaves = dmnsn_priority_leaves(leaves);
dmnsn_delete_array(leaves);
leaves = new_leaves;
}
dmnsn_prnode *root = *(dmnsn_prnode **)dmnsn_array_first(leaves);
dmnsn_delete_array(leaves);
return root;
}
/** Add an object or its children, if any, to an array. */
static void
dmnsn_split_add_object(dmnsn_array *objects, const dmnsn_object *object)
{
if (object->split_children) {
DMNSN_ARRAY_FOREACH (const dmnsn_object **, child, object->children) {
dmnsn_split_add_object(objects, *child);
}
} else {
dmnsn_array_push(objects, &object);
}
}
/** Split unions to create the input for the PR-tree. */
static dmnsn_array *
dmnsn_split_objects(const dmnsn_array *objects)
{
dmnsn_array *split = dmnsn_new_array(sizeof(dmnsn_object *));
DMNSN_ARRAY_FOREACH (const dmnsn_object **, object, objects) {
dmnsn_split_add_object(split, *object);
}
return split;
}
/** Split unbounded objects into a new array. */
static dmnsn_array *
dmnsn_split_unbounded(dmnsn_array *objects)
{
dmnsn_array *unbounded = dmnsn_new_array(sizeof(dmnsn_object *));
dmnsn_object **array = dmnsn_array_first(objects);
size_t i, skip;
for (i = 0, skip = 0; i < dmnsn_array_size(objects); ++i) {
if (dmnsn_bounding_box_is_infinite(array[i]->bounding_box)) {
dmnsn_array_push(unbounded, &array[i]);
++skip;
} else {
array[i - skip] = array[i];
}
}
dmnsn_array_resize(objects, i - skip);
return unbounded;
}
/** Recursively flatten a PR-tree into an array of flat nodes. */
static void
dmnsn_flatten_prtree_recursive(dmnsn_prnode *node, dmnsn_array *flat)
{
size_t currenti = dmnsn_array_size(flat);
dmnsn_array_resize(flat, currenti + 1);
dmnsn_flat_prnode *flatnode = dmnsn_array_at(flat, currenti);
flatnode->bounding_box = node->bounding_box;
flatnode->object = node->object;
for (size_t i = 0; i < DMNSN_PRTREE_B && node->children[i]; ++i) {
dmnsn_flatten_prtree_recursive(node->children[i], flat);
}
/* Array could have been realloc()'d somewhere else above */
flatnode = dmnsn_array_at(flat, currenti);
flatnode->skip = dmnsn_array_size(flat) - currenti;
}
/** Flatten a PR-tree into an array of flat nodes. */
static dmnsn_array *
dmnsn_flatten_prtree(dmnsn_prnode *root)
{
dmnsn_array *flat = dmnsn_new_array(sizeof(dmnsn_flat_prnode));
if (root) {
dmnsn_flatten_prtree_recursive(root, flat);
}
return flat;
}
static size_t dmnsn_prtree_seq = 0;
static pthread_mutex_t dmnsn_prtree_seq_mutex = PTHREAD_MUTEX_INITIALIZER;
/* Construct a PR-tree from a bulk of objects */
dmnsn_prtree *
dmnsn_new_prtree(const dmnsn_array *objects)
{
dmnsn_prtree *prtree = dmnsn_malloc(sizeof(dmnsn_prtree));
dmnsn_array *bounded = dmnsn_split_objects(objects);
prtree->unbounded = dmnsn_split_unbounded(bounded);
dmnsn_prnode *root = dmnsn_make_prtree(bounded);
prtree->bounded = dmnsn_flatten_prtree(root);
dmnsn_delete_prnode(root);
dmnsn_delete_array(bounded);
if (dmnsn_array_size(prtree->unbounded) > 0) {
prtree->bounding_box = dmnsn_infinite_bounding_box();
} else if (dmnsn_array_size(prtree->bounded) > 0) {
dmnsn_flat_prnode *root = dmnsn_array_first(prtree->bounded);
prtree->bounding_box = root->bounding_box;
} else {
prtree->bounding_box = dmnsn_zero_bounding_box();
}
if (pthread_mutex_lock(&dmnsn_prtree_seq_mutex) != 0) {
dmnsn_error("Couldn't lock mutex.");
}
prtree->id = dmnsn_prtree_seq++;
if (pthread_mutex_unlock(&dmnsn_prtree_seq_mutex) != 0) {
dmnsn_error("Couldn't unlock mutex.");
}
return prtree;
}
/** Free a PR-tree. */
void
dmnsn_delete_prtree(dmnsn_prtree *tree)
{
if (tree) {
dmnsn_delete_array(tree->bounded);
dmnsn_delete_array(tree->unbounded);
dmnsn_free(tree);
}
}
/** A line with pre-calculated reciprocals to avoid divisions. */
typedef struct dmnsn_optimized_line {
dmnsn_vector x0; /**< The origin of the line. */
dmnsn_vector n_inv; /**< The inverse of each component of the line's slope .*/
} dmnsn_optimized_line;
/** Precompute inverses for faster ray-box intersection tests. */
static inline dmnsn_optimized_line
dmnsn_optimize_line(dmnsn_line line)
{
dmnsn_optimized_line optline = {
.x0 = line.x0,
.n_inv = dmnsn_new_vector(1.0/line.n.x, 1.0/line.n.y, 1.0/line.n.z)
};
return optline;
}
/** Ray-AABB intersection test, by the slab method. Highly optimized. */
static inline bool
dmnsn_ray_box_intersection(dmnsn_optimized_line optline,
dmnsn_bounding_box box, double t)
{
/*
* This is actually correct, even though it appears not to handle edge cases
* (line.n.{x,y,z} == 0). It works because the infinities that result from
* dividing by zero will still behave correctly in the comparisons. Lines
* which are parallel to an axis and outside the box will have tmin == inf
* or tmax == -inf, while lines inside the box will have tmin and tmax
* unchanged.
*/
double tx1 = (box.min.x - optline.x0.x)*optline.n_inv.x;
double tx2 = (box.max.x - optline.x0.x)*optline.n_inv.x;
double tmin = dmnsn_min(tx1, tx2);
double tmax = dmnsn_max(tx1, tx2);
double ty1 = (box.min.y - optline.x0.y)*optline.n_inv.y;
double ty2 = (box.max.y - optline.x0.y)*optline.n_inv.y;
tmin = dmnsn_max(tmin, dmnsn_min(ty1, ty2));
tmax = dmnsn_min(tmax, dmnsn_max(ty1, ty2));
double tz1 = (box.min.z - optline.x0.z)*optline.n_inv.z;
double tz2 = (box.max.z - optline.x0.z)*optline.n_inv.z;
tmin = dmnsn_max(tmin, dmnsn_min(tz1, tz2));
tmax = dmnsn_min(tmax, dmnsn_max(tz1, tz2));
return tmax >= dmnsn_max(0.0, tmin) && tmin < t;
}
/** The number of intersections to cache. */
#define DMNSN_PRTREE_CACHE_SIZE 32
/** An array of cached intersections. */
typedef struct dmnsn_intersection_cache {
size_t i;
dmnsn_object *objects[DMNSN_PRTREE_CACHE_SIZE];
} dmnsn_intersection_cache;
/** The thread-specific intersection cache. */
static pthread_key_t dmnsn_prtree_caches;
/** Initialize the thread-specific pointer exactly once. */
static pthread_once_t dmnsn_prtree_caches_once = PTHREAD_ONCE_INIT;
static void
dmnsn_delete_prtree_caches(void *caches)
{
dmnsn_delete_array(caches);
}
static void
dmnsn_initialize_prtree_caches(void)
{
if (pthread_key_create(&dmnsn_prtree_caches, dmnsn_delete_prtree_caches) != 0)
{
dmnsn_error("pthread_key_create() failed.");
}
}
static dmnsn_array *
dmnsn_get_prtree_caches(void)
{
if (pthread_once(&dmnsn_prtree_caches_once, dmnsn_initialize_prtree_caches)
!= 0)
{
dmnsn_error("pthread_once() failed.");
}
return pthread_getspecific(dmnsn_prtree_caches);
}
/** Needed because pthreads doesn't destroy data from the main thread unless
it exits with pthread_exit(). */
DMNSN_DESTRUCTOR static void
dmnsn_delete_main_prtree_caches(void)
{
dmnsn_delete_array(dmnsn_get_prtree_caches());
pthread_key_delete(dmnsn_prtree_caches);
}
static dmnsn_intersection_cache *
dmnsn_get_intersection_cache(size_t id)
{
dmnsn_array *caches = dmnsn_get_prtree_caches();
if (!caches) {
caches = dmnsn_new_array(sizeof(dmnsn_intersection_cache));
if (pthread_setspecific(dmnsn_prtree_caches, caches) != 0) {
dmnsn_error("pthread_setspecific() failed.");
}
}
while (dmnsn_array_size(caches) <= id) {
dmnsn_array_resize(caches, dmnsn_array_size(caches) + 1);
dmnsn_intersection_cache *cache = dmnsn_array_last(caches);
cache->i = 0;
for (size_t i = 0; i < DMNSN_PRTREE_CACHE_SIZE; ++i) {
cache->objects[i] = NULL;
}
}
return dmnsn_array_at(caches, id);
}
DMNSN_HOT bool
dmnsn_prtree_intersection(const dmnsn_prtree *tree, dmnsn_line ray,
dmnsn_intersection *intersection, bool reset)
{
double t = INFINITY;
/* Search the unbounded objects */
DMNSN_ARRAY_FOREACH (dmnsn_object **, object, tree->unbounded) {
dmnsn_intersection local_intersection;
if (dmnsn_object_intersection(*object, ray, &local_intersection)) {
if (local_intersection.t < t) {
*intersection = local_intersection;
t = local_intersection.t;
}
}
}
/* Precalculate 1.0/ray.n.{x,y,z} to save time in intersection tests */
dmnsn_optimized_line optline = dmnsn_optimize_line(ray);
/* Search the intersection cache */
dmnsn_intersection_cache *cache = dmnsn_get_intersection_cache(tree->id);
if (reset) {
cache->i = 0;
}
dmnsn_object *cached = NULL, *found = NULL;
if (cache->i < DMNSN_PRTREE_CACHE_SIZE) {
cached = cache->objects[cache->i];
}
if (cached && dmnsn_ray_box_intersection(optline, cached->bounding_box, t)) {
dmnsn_intersection local_intersection;
if (dmnsn_object_intersection(cached, ray, &local_intersection)) {
if (local_intersection.t < t) {
*intersection = local_intersection;
t = local_intersection.t;
found = cached;
}
}
}
/* Search the bounded objects */
dmnsn_flat_prnode *node = dmnsn_array_first(tree->bounded);
while ((size_t)(node - (dmnsn_flat_prnode *)dmnsn_array_first(tree->bounded))
< dmnsn_array_size(tree->bounded))
{
if (dmnsn_ray_box_intersection(optline, node->bounding_box, t)) {
if (node->object && node->object != cached) {
dmnsn_intersection local_intersection;
if (dmnsn_object_intersection(node->object, ray, &local_intersection)) {
if (local_intersection.t < t) {
*intersection = local_intersection;
t = local_intersection.t;
found = node->object;
}
}
}
++node;
} else {
node += node->skip;
}
}
/* Update the cache */
if (cache->i < DMNSN_PRTREE_CACHE_SIZE) {
cache->objects[cache->i++] = found;
}
return !isinf(t);
}
DMNSN_HOT bool
dmnsn_prtree_inside(const dmnsn_prtree *tree, dmnsn_vector point)
{
/* Search the unbounded objects */
DMNSN_ARRAY_FOREACH (dmnsn_object **, object, tree->unbounded) {
if (dmnsn_object_inside(*object, point))
return true;
}
/* Search the bounded objects */
dmnsn_flat_prnode *node = dmnsn_array_first(tree->bounded);
while ((size_t)(node - (dmnsn_flat_prnode *)dmnsn_array_first(tree->bounded))
< dmnsn_array_size(tree->bounded))
{
if (dmnsn_bounding_box_contains(node->bounding_box, point)) {
if (node->object && dmnsn_object_inside(node->object, point)) {
return true;
}
++node;
} else {
node += node->skip;
}
}
return false;
}
|