1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
|
/*************************************************************************
* Copyright (C) 2008 Tavian Barnes <tavianator@gmail.com> *
* *
* This file is part of The Dimension Library. *
* *
* The Dimension Library is free software; you can redistribute it and/ *
* or modify it under the terms of the GNU Lesser General Public License *
* as published by the Free Software Foundation; either version 3 of the *
* License, or (at your option) any later version. *
* *
* The Dimension Library is distributed in the hope that it will be *
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty *
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with this program. If not, see *
* <http://www.gnu.org/licenses/>. *
*************************************************************************/
#include "dimension.h"
#include <math.h>
/* Identity matrix */
dmnsn_matrix
dmnsn_identity_matrix()
{
return dmnsn_matrix_construct(1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0);
}
/* Scaling matrix */
dmnsn_matrix
dmnsn_scale_matrix(dmnsn_vector s)
{
return dmnsn_matrix_construct(s.x, 0.0, 0.0, 0.0,
0.0, s.y, 0.0, 0.0,
0.0, 0.0, s.z, 0.0,
0.0, 0.0, 0.0, 1.0);
}
/* Translation matrix */
dmnsn_matrix
dmnsn_translation_matrix(dmnsn_vector d)
{
return dmnsn_matrix_construct(1.0, 0.0, 0.0, d.x,
0.0, 1.0, 0.0, d.y,
0.0, 0.0, 1.0, d.z,
0.0, 0.0, 0.0, 1.0);
}
/* Left-handed rotation matrix; theta/|theta| = axis, |theta| = angle */
dmnsn_matrix
dmnsn_rotation_matrix(dmnsn_vector theta)
{
/* Two trig calls, 25 multiplications, 13 additions */
dmnsn_vector axis;
double angle, s, t, x, y, z;
angle = dmnsn_vector_norm(theta);
if (angle == 0.0) {
return dmnsn_identity_matrix();
}
axis = dmnsn_vector_normalize(theta);
/* Shorthand to make dmnsn_matrix_construct call legible */
s = sin(angle);
t = 1.0 - cos(angle);
x = axis.x;
y = axis.y;
z = axis.z;
return dmnsn_matrix_construct(
1.0 + t*(x*x - 1.0), -z*s + t*x*y, y*s + t*x*z, 0.0,
z*s + t*x*y, 1.0 + t*(y*y - 1.0), -x*s + t*y*z, 0.0,
-y*s + t*x*z, x*s + t*y*z, 1.0 + t*(z*z - 1.0), 0.0,
0.0, 0.0, 0.0, 1.0
);
}
/* Matrix inversion helper functions */
typedef struct { double n[2][2]; } dmnsn_matrix2;
static dmnsn_matrix2 dmnsn_matrix2_construct(double a1, double a2,
double b1, double b2);
static dmnsn_matrix2 dmnsn_matrix2_inverse(dmnsn_matrix2 A);
static dmnsn_matrix2 dmnsn_matrix2_negate(dmnsn_matrix2 A);
static dmnsn_matrix2 dmnsn_matrix2_sub(dmnsn_matrix2 lhs, dmnsn_matrix2 rhs);
static dmnsn_matrix2 dmnsn_matrix2_mul(dmnsn_matrix2 lhs, dmnsn_matrix2 rhs);
static dmnsn_matrix dmnsn_matrix_inverse_generic(dmnsn_matrix A);
static double dmnsn_matrix_cofactor(dmnsn_matrix A,
unsigned int row, unsigned int col);
/* Invert a matrix, by partitioning */
dmnsn_matrix
dmnsn_matrix_inverse(dmnsn_matrix A)
{
/*
* Use partitioning to invert a matrix:
*
* ( P Q ) -1
* ( R S )
*
* = ( PP QQ )
* ( RR SS ),
*
* with PP = inv(P) - inv(P)*Q*RR,
* QQ = -inv(P)*Q*SS,
* RR = -SS*R*inv(P), and
* SS = inv(S - R*inv(P)*Q).
*/
/* The algorithm uses 2 inversions, 6 multiplications, and 2 subtractions,
giving 52 multiplications, 34 additions, and 8 divisions. */
dmnsn_matrix2 P, Q, R, S, Pi, RPi, PiQ, RPiQ, PP, QQ, RR, SS;
double Pdet = A.n[0][0]*A.n[1][1] - A.n[0][1]*A.n[1][0];
if (Pdet == 0.0) {
/* If we can't invert P, try a more generic algorithm */
return dmnsn_matrix_inverse_generic(A);
}
/* Partition the matrix */
P = dmnsn_matrix2_construct(A.n[0][0], A.n[0][1],
A.n[1][0], A.n[1][1]);
Q = dmnsn_matrix2_construct(A.n[0][2], A.n[0][3],
A.n[1][2], A.n[1][3]);
R = dmnsn_matrix2_construct(A.n[2][0], A.n[2][1],
A.n[3][0], A.n[3][1]);
S = dmnsn_matrix2_construct(A.n[2][2], A.n[2][3],
A.n[3][2], A.n[3][3]);
/* Do this inversion ourselves, since we already have the determinant */
Pi = dmnsn_matrix2_construct( P.n[1][1]/Pdet, -P.n[0][1]/Pdet,
-P.n[1][0]/Pdet, P.n[0][0]/Pdet);
/* Calculate R*inv(P), inv(P)*Q, and R*inv(P)*Q */
RPi = dmnsn_matrix2_mul(R, Pi);
PiQ = dmnsn_matrix2_mul(Pi, Q);
RPiQ = dmnsn_matrix2_mul(R, PiQ);
SS = dmnsn_matrix2_inverse(dmnsn_matrix2_sub(S, RPiQ));
RR = dmnsn_matrix2_negate(dmnsn_matrix2_mul(SS, RPi));
QQ = dmnsn_matrix2_negate(dmnsn_matrix2_mul(PiQ, SS));
PP = dmnsn_matrix2_sub(Pi, dmnsn_matrix2_mul(PiQ, RR));
/* Reconstruct the matrix */
return dmnsn_matrix_construct(PP.n[0][0], PP.n[0][1], QQ.n[0][0], QQ.n[0][1],
PP.n[1][0], PP.n[1][1], QQ.n[1][0], QQ.n[1][1],
RR.n[0][0], RR.n[0][1], SS.n[0][0], SS.n[0][1],
RR.n[1][0], RR.n[1][1], SS.n[1][0], SS.n[1][1]);
}
/* For nice shorthand */
static dmnsn_matrix2
dmnsn_matrix2_construct(double a1, double a2, double b1, double b2)
{
dmnsn_matrix2 m = { { { a1, a2 },
{ b1, b2 } } };
return m;
}
/* Invert a 2x2 matrix */
static dmnsn_matrix2
dmnsn_matrix2_inverse(dmnsn_matrix2 A)
{
/* 4 divisions, 2 multiplications, 1 addition */
double det = A.n[0][0]*A.n[1][1] - A.n[0][1]*A.n[1][0];
return dmnsn_matrix2_construct( A.n[1][1]/det, -A.n[0][1]/det,
-A.n[1][0]/det, A.n[0][0]/det);
}
/* Also basically a shorthand */
static dmnsn_matrix2
dmnsn_matrix2_negate(dmnsn_matrix2 A)
{
return dmnsn_matrix2_construct(-A.n[0][0], -A.n[0][1],
-A.n[1][0], -A.n[1][1]);
}
/* 2x2 matrix subtraction */
static dmnsn_matrix2
dmnsn_matrix2_sub(dmnsn_matrix2 lhs, dmnsn_matrix2 rhs)
{
/* 4 additions */
return dmnsn_matrix2_construct(
lhs.n[0][0] - rhs.n[0][0], lhs.n[0][1] - rhs.n[0][1],
lhs.n[1][0] - rhs.n[1][0], lhs.n[1][1] - rhs.n[1][1]
);
}
/* 2x2 matrix multiplication */
static dmnsn_matrix2
dmnsn_matrix2_mul(dmnsn_matrix2 lhs, dmnsn_matrix2 rhs)
{
/* 8 multiplications, 4 additions */
return dmnsn_matrix2_construct(
lhs.n[0][0]*rhs.n[0][0] + lhs.n[0][1]*rhs.n[1][0],
lhs.n[0][0]*rhs.n[0][1] + lhs.n[0][1]*rhs.n[1][1],
lhs.n[1][0]*rhs.n[0][0] + lhs.n[1][1]*rhs.n[1][0],
lhs.n[1][0]*rhs.n[0][1] + lhs.n[1][1]*rhs.n[1][1]
);
}
/* Invert a matrix, if partitioning failed (|P| == 0) */
static dmnsn_matrix
dmnsn_matrix_inverse_generic(dmnsn_matrix A)
{
/*
* Simply form the matrix's adjugate and divide each element by the
* determinant as we go. The routine itself has 4 additions and 16 divisions
* plus 16 cofactor calculations, giving 144 multiplications, 84 additions,
* and 16 divisions.
*/
dmnsn_matrix inv;
double det = 0.0, C;
unsigned int i, j;
/* Perform a Laplace expansion along the first row to give us the adjugate's
first column and the determinant */
for (j = 0; j < 4; ++j) {
C = dmnsn_matrix_cofactor(A, 0, j);
det += A.n[0][j]*C;
inv.n[j][0] = C;
}
/* Divide the first column by the determinant */
for (j = 0; j < 4; ++j) {
inv.n[j][0] /= det;
}
/* Find columns 2 through 4 */
for (i = 1; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
inv.n[j][i] = dmnsn_matrix_cofactor(A, i, j)/det;
}
}
return inv;
}
/* Gives the cofactor at row, col; the determinant of the matrix formed from A
by ignoring row `row' and column `col', times (-1)**(row + col) */
static double
dmnsn_matrix_cofactor(dmnsn_matrix A, unsigned int row, unsigned int col)
{
/* 9 multiplications, 5 additions */
double n[9], C;
unsigned int i, j, k = 0;
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j) {
if (i != row && j != col) {
n[k] = A.n[i][j];
++k;
}
}
}
C = n[0]*(n[4]*n[8] - n[5]*n[7]) + n[1]*(n[5]*n[6] - n[3]*n[8])
+ n[2]*(n[3]*n[7] - n[4]*n[6]);
if ((row + col)%2 == 0) {
return C;
} else {
return -C;
}
}
/* 4x4 matrix multiplication */
dmnsn_matrix
dmnsn_matrix_mul(dmnsn_matrix lhs, dmnsn_matrix rhs)
{
/* 64 multiplications, 48 additions */
dmnsn_matrix r;
r.n[0][0] = lhs.n[0][0]*rhs.n[0][0] + lhs.n[0][1]*rhs.n[1][0]
+ lhs.n[0][2]*rhs.n[2][0] + lhs.n[0][3]*rhs.n[3][0];
r.n[0][1] = lhs.n[0][0]*rhs.n[0][1] + lhs.n[0][1]*rhs.n[1][1]
+ lhs.n[0][2]*rhs.n[2][1] + lhs.n[0][3]*rhs.n[3][1];
r.n[0][2] = lhs.n[0][0]*rhs.n[0][2] + lhs.n[0][1]*rhs.n[1][2]
+ lhs.n[0][2]*rhs.n[2][2] + lhs.n[0][3]*rhs.n[3][2];
r.n[0][3] = lhs.n[0][0]*rhs.n[0][3] + lhs.n[0][1]*rhs.n[1][3]
+ lhs.n[0][2]*rhs.n[2][3] + lhs.n[0][3]*rhs.n[3][3];
r.n[1][0] = lhs.n[1][0]*rhs.n[0][0] + lhs.n[1][1]*rhs.n[1][0]
+ lhs.n[1][2]*rhs.n[2][0] + lhs.n[1][3]*rhs.n[3][0];
r.n[1][1] = lhs.n[1][0]*rhs.n[0][1] + lhs.n[1][1]*rhs.n[1][1]
+ lhs.n[1][2]*rhs.n[2][1] + lhs.n[1][3]*rhs.n[3][1];
r.n[1][2] = lhs.n[1][0]*rhs.n[0][2] + lhs.n[1][1]*rhs.n[1][2]
+ lhs.n[1][2]*rhs.n[2][2] + lhs.n[1][3]*rhs.n[3][2];
r.n[1][3] = lhs.n[1][0]*rhs.n[0][3] + lhs.n[1][1]*rhs.n[1][3]
+ lhs.n[1][2]*rhs.n[2][3] + lhs.n[1][3]*rhs.n[3][3];
r.n[2][0] = lhs.n[2][0]*rhs.n[0][0] + lhs.n[2][1]*rhs.n[1][0]
+ lhs.n[2][2]*rhs.n[2][0] + lhs.n[2][3]*rhs.n[3][0];
r.n[2][1] = lhs.n[2][0]*rhs.n[0][1] + lhs.n[2][1]*rhs.n[1][1]
+ lhs.n[2][2]*rhs.n[2][1] + lhs.n[2][3]*rhs.n[3][1];
r.n[2][2] = lhs.n[2][0]*rhs.n[0][2] + lhs.n[2][1]*rhs.n[1][2]
+ lhs.n[2][2]*rhs.n[2][2] + lhs.n[2][3]*rhs.n[3][2];
r.n[2][3] = lhs.n[2][0]*rhs.n[0][3] + lhs.n[2][1]*rhs.n[1][3]
+ lhs.n[2][2]*rhs.n[2][3] + lhs.n[2][3]*rhs.n[3][3];
r.n[3][0] = lhs.n[3][0]*rhs.n[0][0] + lhs.n[3][1]*rhs.n[1][0]
+ lhs.n[3][2]*rhs.n[2][0] + lhs.n[3][3]*rhs.n[3][0];
r.n[3][1] = lhs.n[3][0]*rhs.n[0][1] + lhs.n[3][1]*rhs.n[1][1]
+ lhs.n[3][2]*rhs.n[2][1] + lhs.n[3][3]*rhs.n[3][1];
r.n[3][2] = lhs.n[3][0]*rhs.n[0][2] + lhs.n[3][1]*rhs.n[1][2]
+ lhs.n[3][2]*rhs.n[2][2] + lhs.n[3][3]*rhs.n[3][2];
r.n[3][3] = lhs.n[3][0]*rhs.n[0][3] + lhs.n[3][1]*rhs.n[1][3]
+ lhs.n[3][2]*rhs.n[2][3] + lhs.n[3][3]*rhs.n[3][3];
return r;
}
/* Affine transformation; lhs*(x,y,z,1), normalized so the fourth element is
1 */
dmnsn_vector
dmnsn_matrix_vector_mul(dmnsn_matrix lhs, dmnsn_vector rhs)
{
/* 12 multiplications, 3 divisions, 12 additions */
dmnsn_vector r;
double w;
r.x = lhs.n[0][0]*rhs.x + lhs.n[0][1]*rhs.y + lhs.n[0][2]*rhs.z + lhs.n[0][3];
r.y = lhs.n[1][0]*rhs.x + lhs.n[1][1]*rhs.y + lhs.n[1][2]*rhs.z + lhs.n[1][3];
r.z = lhs.n[2][0]*rhs.x + lhs.n[2][1]*rhs.y + lhs.n[2][2]*rhs.z + lhs.n[2][3];
w = lhs.n[3][0]*rhs.x + lhs.n[3][1]*rhs.y + lhs.n[3][2]*rhs.z + lhs.n[3][3];
return dmnsn_vector_div(r, w);
}
/* Affine line transformation; n = lhs*(x0 + n) - lhs*x0, x0 *= lhs */
dmnsn_line
dmnsn_matrix_line_mul(dmnsn_matrix lhs, dmnsn_line rhs)
{
/* 24 multiplications, 6 divisions, 30 additions */
dmnsn_line l;
l.x0 = dmnsn_matrix_vector_mul(lhs, rhs.x0);
l.n = dmnsn_vector_sub(
dmnsn_matrix_vector_mul(lhs, dmnsn_vector_add(rhs.x0, rhs.n)),
l.x0
);
return l;
}
/* Solve for the t value such that x0 + t*n = x */
double
dmnsn_line_index(dmnsn_line l, dmnsn_vector x)
{
/* nz + 1 divisions, nz additions */
double d = 0.0;
unsigned int nz = 0;
if (l.n.x != 0.0) {
d += (x.x - l.x0.x)/l.n.x;
++nz;
}
if (l.n.y != 0.0) {
d += (x.y - l.x0.y)/l.n.y;
++nz;
}
if (l.n.z != 0.0) {
d += (x.z - l.x0.z)/l.n.z;
++nz;
}
return d/nz;
}
|