1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
|
/*************************************************************************
* Copyright (C) 2009-2014 Tavian Barnes <tavianator@tavianator.com> *
* *
* This file is part of The Dimension Library. *
* *
* The Dimension Library is free software; you can redistribute it and/ *
* or modify it under the terms of the GNU Lesser General Public License *
* as published by the Free Software Foundation; either version 3 of the *
* License, or (at your option) any later version. *
* *
* The Dimension Library is distributed in the hope that it will be *
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty *
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with this program. If not, see *
* <http://www.gnu.org/licenses/>. *
*************************************************************************/
/**
* @file
* Core geometric types like vectors, matricies, and rays.
*/
#include <math.h>
#include <stdbool.h>
/** A vector in 3 dimensions. */
typedef struct dmnsn_vector {
double x; /**< The x component. */
double y; /**< The y component. */
double z; /**< The z component. */
} dmnsn_vector;
/** A standard format string for vectors. */
#define DMNSN_VECTOR_FORMAT "<%g, %g, %g>"
/** The appropriate arguements to printf() a vector. */
#define DMNSN_VECTOR_PRINTF(v) (v).x, (v).y, (v).z
/** A 4x4 affine transformation matrix, with implied [0 0 0 1] bottom row. */
typedef struct dmnsn_matrix {
double n[3][4]; /**< The matrix elements in row-major order. */
} dmnsn_matrix;
/** A standard format string for matricies. */
#define DMNSN_MATRIX_FORMAT \
"[%g\t%g\t%g\t%g]\n" \
"[%g\t%g\t%g\t%g]\n" \
"[%g\t%g\t%g\t%g]\n" \
"[%g\t%g\t%g\t%g]"
/** The appropriate arguements to printf() a matrix. */
#define DMNSN_MATRIX_PRINTF(m) \
(m).n[0][0], (m).n[0][1], (m).n[0][2], (m).n[0][3], \
(m).n[1][0], (m).n[1][1], (m).n[1][2], (m).n[1][3], \
(m).n[2][0], (m).n[2][1], (m).n[2][2], (m).n[2][3], \
0.0, 0.0, 0.0, 1.0
/** A line, or ray. */
typedef struct dmnsn_line {
dmnsn_vector x0; /**< A point on the line. */
dmnsn_vector n; /**< A normal vector; the direction of the line. */
} dmnsn_line;
/** A standard format string for lines. */
#define DMNSN_LINE_FORMAT "(<%g, %g, %g> + t*<%g, %g, %g>)"
/** The appropriate arguements to printf() a line. */
#define DMNSN_LINE_PRINTF(l) \
DMNSN_VECTOR_PRINTF((l).x0), DMNSN_VECTOR_PRINTF((l).n)
/** An axis-aligned bounding box (AABB). */
typedef struct dmnsn_bounding_box {
dmnsn_vector min; /**< The coordinate-wise minimum extent of the box. */
dmnsn_vector max; /**< The coordinate-wise maximum extent of the box. */
} dmnsn_bounding_box;
/** A standard format string for bounding boxes. */
#define DMNSN_BOUNDING_BOX_FORMAT "(<%g, %g, %g> ==> <%g, %g, %g>)"
/** The appropriate arguements to printf() a bounding box. */
#define DMNSN_BOUNDING_BOX_PRINTF(box) \
DMNSN_VECTOR_PRINTF((box).min), DMNSN_VECTOR_PRINTF((box).max)
/* Constants */
/** The smallest value considered non-zero by some numerical algorithms. */
#define dmnsn_epsilon 1.0e-10
/** The zero vector. */
static const dmnsn_vector dmnsn_zero = { 0.0, 0.0, 0.0 };
/** The x vector. */
static const dmnsn_vector dmnsn_x = { 1.0, 0.0, 0.0 };
/** The y vector. */
static const dmnsn_vector dmnsn_y = { 0.0, 1.0, 0.0 };
/** The z vector. */
static const dmnsn_vector dmnsn_z = { 0.0, 0.0, 1.0 };
/**
* @def DMNSN_INFINITY
* Expands to floating-point infinity.
*/
#if defined(INFINITY) || DMNSN_C99
#define DMNSN_INFINITY INFINITY
#else
#define DMNSN_INFINITY HUGE_VAL
#endif
/* Scalar functions */
/** Find the minimum of two scalars. */
DMNSN_INLINE double
dmnsn_min(double a, double b)
{
return a < b ? a : b;
}
/** Find the maximum of two scalars. */
DMNSN_INLINE double
dmnsn_max(double a, double b)
{
return a > b ? a : b;
}
/** Convert degrees to radians. */
DMNSN_INLINE double
dmnsn_radians(double degrees)
{
return degrees*atan(1.0)/45.0;
}
/** Convert radians to degrees. */
DMNSN_INLINE double
dmnsn_degrees(double radians)
{
return radians*45.0/atan(1.0);
}
/** Return the sign of a scalar. */
DMNSN_INLINE int
dmnsn_sign(double n)
{
if (n > 0.0) {
return 1;
} else if (n < 0.0) {
return -1;
} else {
return 0;
}
}
/* Shorthand for vector/matrix construction */
/** Construct a new vector. */
DMNSN_INLINE dmnsn_vector
dmnsn_new_vector(double x, double y, double z)
{
dmnsn_vector v = { x, y, z };
return v;
}
/** Construct a new transformation matrix. */
DMNSN_INLINE dmnsn_matrix
dmnsn_new_matrix(double a0, double a1, double a2, double a3,
double b0, double b1, double b2, double b3,
double c0, double c1, double c2, double c3)
{
dmnsn_matrix m = { { { a0, a1, a2, a3 },
{ b0, b1, b2, b3 },
{ c0, c1, c2, c3 } } };
return m;
}
/** Construct a new transformation matrix from column vectors. */
DMNSN_INLINE dmnsn_matrix
dmnsn_new_matrix4(dmnsn_vector a, dmnsn_vector b, dmnsn_vector c,
dmnsn_vector d)
{
dmnsn_matrix m = { { { a.x, b.x, c.x, d.x },
{ a.y, b.y, c.y, d.y },
{ a.z, b.z, c.z, d.z } } };
return m;
}
/** Extract column vectors from a matrix. */
DMNSN_INLINE dmnsn_vector
dmnsn_matrix_column(dmnsn_matrix M, unsigned int i)
{
return dmnsn_new_vector(M.n[0][i], M.n[1][i], M.n[2][i]);
}
/** Return the identity matrix. */
dmnsn_matrix dmnsn_identity_matrix(void);
/**
* A scale transformation.
* @param[in] s A vector with components representing the scaling factor in
* each axis.
* @return The transformation matrix.
*/
dmnsn_matrix dmnsn_scale_matrix(dmnsn_vector s);
/**
* A translation.
* @param[in] d The vector to translate by.
* @return The transformation matrix.
*/
dmnsn_matrix dmnsn_translation_matrix(dmnsn_vector d);
/**
* A left-handed rotation.
* @param[in] theta A vector representing an axis and angle.
* @f$ axis = \vec{\theta}/|\vec{\theta}| @f$,
* @f$ angle = |\vec{\theta}| @f$
* @return The transformation matrix.
*/
dmnsn_matrix dmnsn_rotation_matrix(dmnsn_vector theta);
/**
* An alignment matrix.
* @param[in] from The initial vector.
* @param[in] to The desired direction.
* @param[in] axis1 The first axis about which to rotate.
* @param[in] axis2 The second axis about which to rotate.
* @return A transformation matrix that will rotate \p from to \p to.
*/
dmnsn_matrix dmnsn_alignment_matrix(dmnsn_vector from, dmnsn_vector to,
dmnsn_vector axis1, dmnsn_vector axis2);
/**
* Construct a new line.
* @param[in] x0 A point on the line.
* @param[in] n The direction of the line.
* @return The new line.
*/
DMNSN_INLINE dmnsn_line
dmnsn_new_line(dmnsn_vector x0, dmnsn_vector n)
{
dmnsn_line l = { x0, n };
return l;
}
/**
* Construct a new bounding box.
* @param[in] min The minimal extent of the bounding box.
* @param[in] max The maximal extent of the bounding box.
* @return The new bounding box.
*/
DMNSN_INLINE dmnsn_bounding_box
dmnsn_new_bounding_box(dmnsn_vector min, dmnsn_vector max)
{
dmnsn_bounding_box box = { min, max };
return box;
}
/** Return the bounding box which contains nothing. */
DMNSN_INLINE dmnsn_bounding_box
dmnsn_zero_bounding_box(void)
{
dmnsn_bounding_box box = {
{ DMNSN_INFINITY, DMNSN_INFINITY, DMNSN_INFINITY },
{ -DMNSN_INFINITY, -DMNSN_INFINITY, -DMNSN_INFINITY }
};
return box;
}
/** Return the bounding box which contains everything. */
DMNSN_INLINE dmnsn_bounding_box
dmnsn_infinite_bounding_box(void)
{
dmnsn_bounding_box box = {
{ -DMNSN_INFINITY, -DMNSN_INFINITY, -DMNSN_INFINITY },
{ DMNSN_INFINITY, DMNSN_INFINITY, DMNSN_INFINITY }
};
return box;
}
/* Vector and matrix arithmetic */
/** Negate a vector. */
DMNSN_INLINE dmnsn_vector
dmnsn_vector_negate(dmnsn_vector rhs)
{
/* 3 negations */
dmnsn_vector v = { -rhs.x, -rhs.y, -rhs.z };
return v;
}
/** Add two vectors. */
DMNSN_INLINE dmnsn_vector
dmnsn_vector_add(dmnsn_vector lhs, dmnsn_vector rhs)
{
/* 3 additions */
dmnsn_vector v = { lhs.x + rhs.x, lhs.y + rhs.y, lhs.z + rhs.z };
return v;
}
/** Subtract two vectors. */
DMNSN_INLINE dmnsn_vector
dmnsn_vector_sub(dmnsn_vector lhs, dmnsn_vector rhs)
{
/* 3 additions */
dmnsn_vector v = { lhs.x - rhs.x, lhs.y - rhs.y, lhs.z - rhs.z };
return v;
}
/** Multiply a vector by a scalar. */
DMNSN_INLINE dmnsn_vector
dmnsn_vector_mul(double lhs, dmnsn_vector rhs)
{
/* 3 multiplications */
dmnsn_vector v = { lhs*rhs.x, lhs*rhs.y, lhs*rhs.z };
return v;
}
/** Divide a vector by a scalar. */
DMNSN_INLINE dmnsn_vector
dmnsn_vector_div(dmnsn_vector lhs, double rhs)
{
/* 3 divisions */
dmnsn_vector v = { lhs.x/rhs, lhs.y/rhs, lhs.z/rhs };
return v;
}
/** Return the dot product of two vectors. */
DMNSN_INLINE double
dmnsn_vector_dot(dmnsn_vector lhs, dmnsn_vector rhs)
{
/* 3 multiplications, 2 additions */
return lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z;
}
/** Return the cross product of two vectors. */
DMNSN_INLINE dmnsn_vector
dmnsn_vector_cross(dmnsn_vector lhs, dmnsn_vector rhs)
{
/* 6 multiplications, 3 additions */
dmnsn_vector v = { lhs.y*rhs.z - lhs.z*rhs.y,
lhs.z*rhs.x - lhs.x*rhs.z,
lhs.x*rhs.y - lhs.y*rhs.x };
return v;
}
/** Return the projection of \p u onto \p d. */
DMNSN_INLINE dmnsn_vector
dmnsn_vector_proj(dmnsn_vector u, dmnsn_vector d)
{
/* 1 division, 9 multiplications, 4 additions */
return dmnsn_vector_mul(dmnsn_vector_dot(u, d)/dmnsn_vector_dot(d, d), d);
}
/** Return the magnitude of a vector. */
DMNSN_INLINE double
dmnsn_vector_norm(dmnsn_vector n)
{
/* 1 sqrt, 3 multiplications, 2 additions */
return sqrt(dmnsn_vector_dot(n, n));
}
/** Return the direction of a vector. */
DMNSN_INLINE dmnsn_vector
dmnsn_vector_normalized(dmnsn_vector n)
{
/* 1 sqrt, 3 divisions, 3 multiplications, 2 additions */
return dmnsn_vector_div(n, dmnsn_vector_norm(n));
}
/** Return the component-wise minimum of two vectors. */
DMNSN_INLINE dmnsn_vector
dmnsn_vector_min(dmnsn_vector a, dmnsn_vector b)
{
return dmnsn_new_vector(
dmnsn_min(a.x, b.x),
dmnsn_min(a.y, b.y),
dmnsn_min(a.z, b.z)
);
}
/** Return the component-wise maximum of two vectors. */
DMNSN_INLINE dmnsn_vector
dmnsn_vector_max(dmnsn_vector a, dmnsn_vector b)
{
return dmnsn_new_vector(
dmnsn_max(a.x, b.x),
dmnsn_max(a.y, b.y),
dmnsn_max(a.z, b.z)
);
}
/** Invert a matrix. */
dmnsn_matrix dmnsn_matrix_inverse(dmnsn_matrix A);
/** Multiply two matricies. */
dmnsn_matrix dmnsn_matrix_mul(dmnsn_matrix lhs, dmnsn_matrix rhs);
/** Transform a point by a matrix. */
DMNSN_INLINE dmnsn_vector
dmnsn_transform_point(dmnsn_matrix T, dmnsn_vector v)
{
/* 9 multiplications, 9 additions */
dmnsn_vector r;
r.x = T.n[0][0]*v.x + T.n[0][1]*v.y + T.n[0][2]*v.z + T.n[0][3];
r.y = T.n[1][0]*v.x + T.n[1][1]*v.y + T.n[1][2]*v.z + T.n[1][3];
r.z = T.n[2][0]*v.x + T.n[2][1]*v.y + T.n[2][2]*v.z + T.n[2][3];
return r;
}
/** Transform a direction by a matrix. */
DMNSN_INLINE dmnsn_vector
dmnsn_transform_direction(dmnsn_matrix T, dmnsn_vector v)
{
/* 9 multiplications, 6 additions */
dmnsn_vector r;
r.x = T.n[0][0]*v.x + T.n[0][1]*v.y + T.n[0][2]*v.z;
r.y = T.n[1][0]*v.x + T.n[1][1]*v.y + T.n[1][2]*v.z;
r.z = T.n[2][0]*v.x + T.n[2][1]*v.y + T.n[2][2]*v.z;
return r;
}
/**
* Transform a pseudovector by a matrix.
* @param[in] Tinv The inverse of the transformation matrix.
* @param[in] v The pseudovector to transform
* @return The transformed pseudovector.
*/
DMNSN_INLINE dmnsn_vector
dmnsn_transform_normal(dmnsn_matrix Tinv, dmnsn_vector v)
{
/* Multiply by the transpose of the inverse
(9 multiplications, 6 additions) */
dmnsn_vector r;
r.x = Tinv.n[0][0]*v.x + Tinv.n[1][0]*v.y + Tinv.n[2][0]*v.z;
r.y = Tinv.n[0][1]*v.x + Tinv.n[1][1]*v.y + Tinv.n[2][1]*v.z;
r.z = Tinv.n[0][2]*v.x + Tinv.n[1][2]*v.y + Tinv.n[2][2]*v.z;
return r;
}
/** Transform a bounding box by a matrix. */
dmnsn_bounding_box dmnsn_transform_bounding_box(dmnsn_matrix T,
dmnsn_bounding_box box);
/**
* Transform a line by a matrix.
* \f$ n' = T(l.\vec{x_0} + l.\vec{n}) - T(l.\vec{x_0}) \f$,
* \f$ \vec{x_0}' = T(l.\vec{x_0}) \f$
*/
DMNSN_INLINE dmnsn_line
dmnsn_transform_line(dmnsn_matrix T, dmnsn_line l)
{
/* 18 multiplications, 24 additions */
dmnsn_line ret;
ret.x0 = dmnsn_transform_point(T, l.x0);
ret.n = dmnsn_transform_direction(T, l.n);
return ret;
}
/**
* Return the point at \p t on a line.
* The point is defined by \f$ l.\vec{x_0} + t \cdot l.\vec{n} \f$
*/
DMNSN_INLINE dmnsn_vector
dmnsn_line_point(dmnsn_line l, double t)
{
return dmnsn_vector_add(l.x0, dmnsn_vector_mul(t, l.n));
}
/** Add epsilon*l.n to l.x0, to avoid self-intersections. */
DMNSN_INLINE dmnsn_line
dmnsn_line_add_epsilon(dmnsn_line l)
{
return dmnsn_new_line(
dmnsn_vector_add(
l.x0,
dmnsn_vector_mul(1.0e3*dmnsn_epsilon, l.n)
),
l.n
);
}
/**
* Construct a new symmetric bounding box.
* @param[in] r The extent of the bounding box from the origin.
* @return The new bounding box.
*/
DMNSN_INLINE dmnsn_bounding_box
dmnsn_symmetric_bounding_box(dmnsn_vector r)
{
dmnsn_vector minus_r = dmnsn_vector_negate(r);
dmnsn_bounding_box box = {
dmnsn_vector_min(r, minus_r),
dmnsn_vector_max(r, minus_r)
};
return box;
}
/** Return whether \p p is within the axis-aligned bounding box. */
DMNSN_INLINE bool
dmnsn_bounding_box_contains(dmnsn_bounding_box box, dmnsn_vector p)
{
return (p.x >= box.min.x && p.y >= box.min.y && p.z >= box.min.z)
&& (p.x <= box.max.x && p.y <= box.max.y && p.z <= box.max.z);
}
/** Return whether a bounding box is infinite. */
DMNSN_INLINE bool
dmnsn_bounding_box_is_infinite(dmnsn_bounding_box box)
{
return box.min.x == -DMNSN_INFINITY;
}
/**
* Expand a bounding box to contain a point
* @param[in] box The bounding box to expand.
* @param[in] point The point to swallow.
* @return The expanded bounding box.
*/
DMNSN_INLINE dmnsn_bounding_box
dmnsn_bounding_box_swallow(dmnsn_bounding_box box, dmnsn_vector point)
{
dmnsn_bounding_box ret = {
dmnsn_vector_min(box.min, point),
dmnsn_vector_max(box.max, point)
};
return ret;
}
/** Return whether a scalar is NaN. */
DMNSN_INLINE bool
dmnsn_isnan(double n)
{
#if DMNSN_C99
return isnan(n);
#else
return n != n;
#endif
}
/** Return whether a vector contains any NaN components. */
DMNSN_INLINE bool
dmnsn_vector_isnan(dmnsn_vector v)
{
return dmnsn_isnan(v.x) || dmnsn_isnan(v.y) || dmnsn_isnan(v.z);
}
/** Return whether a matrix contains any NaN components. */
DMNSN_INLINE bool
dmnsn_matrix_isnan(dmnsn_matrix m)
{
size_t i, j;
for (i = 0; i < 3; ++i) {
for (j = 0; j < 4; ++j) {
if (dmnsn_isnan(m.n[i][j])) {
return true;
}
}
}
return false;
}
/** Return whether a line contains any NaN entries. */
DMNSN_INLINE bool
dmnsn_line_isnan(dmnsn_line l)
{
return dmnsn_vector_isnan(l.x0) || dmnsn_vector_isnan(l.n);
}
/** Return whether a bounding box has any NaN components. */
DMNSN_INLINE bool
dmnsn_bounding_box_isnan(dmnsn_bounding_box box)
{
return dmnsn_vector_isnan(box.min) || dmnsn_vector_isnan(box.max);
}
|