summaryrefslogtreecommitdiffstats
path: root/libdimension/dimension/geometry.h
diff options
context:
space:
mode:
Diffstat (limited to 'libdimension/dimension/geometry.h')
-rw-r--r--libdimension/dimension/geometry.h159
1 files changed, 79 insertions, 80 deletions
diff --git a/libdimension/dimension/geometry.h b/libdimension/dimension/geometry.h
index b2ba551..fd4a781 100644
--- a/libdimension/dimension/geometry.h
+++ b/libdimension/dimension/geometry.h
@@ -26,105 +26,105 @@
#include <math.h>
#include <stdbool.h>
-/** A vector in 3 dimensions. */
+/// A vector in 3 dimensions.
typedef struct dmnsn_vector {
- double x; /**< The x component. */
- double y; /**< The y component. */
- double z; /**< The z component. */
+ double x; ///< The x component.
+ double y; ///< The y component.
+ double z; ///< The z component.
} dmnsn_vector;
-/** A standard format string for vectors. */
+/// A standard format string for vectors.
#define DMNSN_VECTOR_FORMAT "<%g, %g, %g>"
-/** The appropriate arguements to printf() a vector. */
+/// The appropriate arguements to printf() a vector.
#define DMNSN_VECTOR_PRINTF(v) (v).x, (v).y, (v).z
-/** A 4x4 affine transformation matrix, with implied [0 0 0 1] bottom row. */
+/// A 4x4 affine transformation matrix, with implied [0 0 0 1] bottom row.
typedef struct dmnsn_matrix {
- double n[3][4]; /**< The matrix elements in row-major order. */
+ double n[3][4]; ///< The matrix elements in row-major order.
} dmnsn_matrix;
-/** A standard format string for matricies. */
+/// A standard format string for matricies.
#define DMNSN_MATRIX_FORMAT \
"[%g\t%g\t%g\t%g]\n" \
"[%g\t%g\t%g\t%g]\n" \
"[%g\t%g\t%g\t%g]\n" \
"[%g\t%g\t%g\t%g]"
-/** The appropriate arguements to printf() a matrix. */
+/// The appropriate arguements to printf() a matrix.
#define DMNSN_MATRIX_PRINTF(m) \
(m).n[0][0], (m).n[0][1], (m).n[0][2], (m).n[0][3], \
(m).n[1][0], (m).n[1][1], (m).n[1][2], (m).n[1][3], \
(m).n[2][0], (m).n[2][1], (m).n[2][2], (m).n[2][3], \
0.0, 0.0, 0.0, 1.0
-/** A line, or ray. */
+/// A line, or ray.
typedef struct dmnsn_line {
- dmnsn_vector x0; /**< A point on the line. */
- dmnsn_vector n; /**< A normal vector; the direction of the line. */
+ dmnsn_vector x0; ///< A point on the line.
+ dmnsn_vector n; ///< A normal vector; the direction of the line.
} dmnsn_line;
-/** A standard format string for lines. */
+/// A standard format string for lines.
#define DMNSN_LINE_FORMAT "(<%g, %g, %g> + t*<%g, %g, %g>)"
-/** The appropriate arguements to printf() a line. */
+/// The appropriate arguements to printf() a line.
#define DMNSN_LINE_PRINTF(l) \
DMNSN_VECTOR_PRINTF((l).x0), DMNSN_VECTOR_PRINTF((l).n)
-/** An axis-aligned bounding box (AABB). */
+/// An axis-aligned bounding box (AABB).
typedef struct dmnsn_bounding_box {
- dmnsn_vector min; /**< The coordinate-wise minimum extent of the box. */
- dmnsn_vector max; /**< The coordinate-wise maximum extent of the box. */
+ dmnsn_vector min; ///< The coordinate-wise minimum extent of the box.
+ dmnsn_vector max; ///< The coordinate-wise maximum extent of the box.
} dmnsn_bounding_box;
-/** A standard format string for bounding boxes. */
+/// A standard format string for bounding boxes.
#define DMNSN_BOUNDING_BOX_FORMAT "(<%g, %g, %g> ==> <%g, %g, %g>)"
-/** The appropriate arguements to printf() a bounding box. */
+/// The appropriate arguements to printf() a bounding box.
#define DMNSN_BOUNDING_BOX_PRINTF(box) \
DMNSN_VECTOR_PRINTF((box).min), DMNSN_VECTOR_PRINTF((box).max)
-/* Constants */
+// Constants
-/** The smallest value considered non-zero by some numerical algorithms. */
+/// The smallest value considered non-zero by some numerical algorithms.
#define dmnsn_epsilon 1.0e-10
-/** The zero vector. */
+/// The zero vector.
static const dmnsn_vector dmnsn_zero = { 0.0, 0.0, 0.0 };
-/** The x vector. */
+/// The x vector.
static const dmnsn_vector dmnsn_x = { 1.0, 0.0, 0.0 };
-/** The y vector. */
+/// The y vector.
static const dmnsn_vector dmnsn_y = { 0.0, 1.0, 0.0 };
-/** The z vector. */
+/// The z vector.
static const dmnsn_vector dmnsn_z = { 0.0, 0.0, 1.0 };
-/* Scalar functions */
+// Scalar functions
-/** Find the minimum of two scalars. */
+/// Find the minimum of two scalars.
DMNSN_INLINE double
dmnsn_min(double a, double b)
{
return a < b ? a : b;
}
-/** Find the maximum of two scalars. */
+/// Find the maximum of two scalars.
DMNSN_INLINE double
dmnsn_max(double a, double b)
{
return a > b ? a : b;
}
-/** Convert degrees to radians. */
+/// Convert degrees to radians.
DMNSN_INLINE double
dmnsn_radians(double degrees)
{
return degrees*atan(1.0)/45.0;
}
-/** Convert radians to degrees. */
+/// Convert radians to degrees.
DMNSN_INLINE double
dmnsn_degrees(double radians)
{
return radians*45.0/atan(1.0);
}
-/** Return the sign of a scalar. */
+/// Return the sign of a scalar.
DMNSN_INLINE int
dmnsn_sign(double n)
{
@@ -137,9 +137,9 @@ dmnsn_sign(double n)
}
}
-/* Shorthand for vector/matrix construction */
+// Shorthand for vector/matrix construction
-/** Construct a new vector. */
+/// Construct a new vector.
DMNSN_INLINE dmnsn_vector
dmnsn_new_vector(double x, double y, double z)
{
@@ -147,7 +147,7 @@ dmnsn_new_vector(double x, double y, double z)
return v;
}
-/** Construct a new transformation matrix. */
+/// Construct a new transformation matrix.
DMNSN_INLINE dmnsn_matrix
dmnsn_new_matrix(double a0, double a1, double a2, double a3,
double b0, double b1, double b2, double b3,
@@ -159,7 +159,7 @@ dmnsn_new_matrix(double a0, double a1, double a2, double a3,
return m;
}
-/** Construct a new transformation matrix from column vectors. */
+/// Construct a new transformation matrix from column vectors.
DMNSN_INLINE dmnsn_matrix
dmnsn_new_matrix4(dmnsn_vector a, dmnsn_vector b, dmnsn_vector c,
dmnsn_vector d)
@@ -170,14 +170,14 @@ dmnsn_new_matrix4(dmnsn_vector a, dmnsn_vector b, dmnsn_vector c,
return m;
}
-/** Extract column vectors from a matrix. */
+/// Extract column vectors from a matrix.
DMNSN_INLINE dmnsn_vector
dmnsn_matrix_column(dmnsn_matrix M, unsigned int i)
{
return dmnsn_new_vector(M.n[0][i], M.n[1][i], M.n[2][i]);
}
-/** Return the identity matrix. */
+/// Return the identity matrix.
dmnsn_matrix dmnsn_identity_matrix(void);
/**
@@ -238,7 +238,7 @@ dmnsn_new_bounding_box(dmnsn_vector min, dmnsn_vector max)
return box;
}
-/** Return the bounding box which contains nothing. */
+/// Return the bounding box which contains nothing.
DMNSN_INLINE dmnsn_bounding_box
dmnsn_zero_bounding_box(void)
{
@@ -249,7 +249,7 @@ dmnsn_zero_bounding_box(void)
return box;
}
-/** Return the bounding box which contains everything. */
+/// Return the bounding box which contains everything.
DMNSN_INLINE dmnsn_bounding_box
dmnsn_infinite_bounding_box(void)
{
@@ -260,97 +260,97 @@ dmnsn_infinite_bounding_box(void)
return box;
}
-/* Vector and matrix arithmetic */
+// Vector and matrix arithmetic
-/** Negate a vector. */
+/// Negate a vector.
DMNSN_INLINE dmnsn_vector
dmnsn_vector_negate(dmnsn_vector rhs)
{
- /* 3 negations */
+ // 3 negations
dmnsn_vector v = { -rhs.x, -rhs.y, -rhs.z };
return v;
}
-/** Add two vectors. */
+/// Add two vectors.
DMNSN_INLINE dmnsn_vector
dmnsn_vector_add(dmnsn_vector lhs, dmnsn_vector rhs)
{
- /* 3 additions */
+ // 3 additions
dmnsn_vector v = { lhs.x + rhs.x, lhs.y + rhs.y, lhs.z + rhs.z };
return v;
}
-/** Subtract two vectors. */
+/// Subtract two vectors.
DMNSN_INLINE dmnsn_vector
dmnsn_vector_sub(dmnsn_vector lhs, dmnsn_vector rhs)
{
- /* 3 additions */
+ // 3 additions
dmnsn_vector v = { lhs.x - rhs.x, lhs.y - rhs.y, lhs.z - rhs.z };
return v;
}
-/** Multiply a vector by a scalar. */
+/// Multiply a vector by a scalar.
DMNSN_INLINE dmnsn_vector
dmnsn_vector_mul(double lhs, dmnsn_vector rhs)
{
- /* 3 multiplications */
+ // 3 multiplications
dmnsn_vector v = { lhs*rhs.x, lhs*rhs.y, lhs*rhs.z };
return v;
}
-/** Divide a vector by a scalar. */
+/// Divide a vector by a scalar.
DMNSN_INLINE dmnsn_vector
dmnsn_vector_div(dmnsn_vector lhs, double rhs)
{
- /* 3 divisions */
+ // 3 divisions
dmnsn_vector v = { lhs.x/rhs, lhs.y/rhs, lhs.z/rhs };
return v;
}
-/** Return the dot product of two vectors. */
+/// Return the dot product of two vectors.
DMNSN_INLINE double
dmnsn_vector_dot(dmnsn_vector lhs, dmnsn_vector rhs)
{
- /* 3 multiplications, 2 additions */
+ // 3 multiplications, 2 additions
return lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z;
}
-/** Return the cross product of two vectors. */
+/// Return the cross product of two vectors.
DMNSN_INLINE dmnsn_vector
dmnsn_vector_cross(dmnsn_vector lhs, dmnsn_vector rhs)
{
- /* 6 multiplications, 3 additions */
+ // 6 multiplications, 3 additions
dmnsn_vector v = { lhs.y*rhs.z - lhs.z*rhs.y,
lhs.z*rhs.x - lhs.x*rhs.z,
lhs.x*rhs.y - lhs.y*rhs.x };
return v;
}
-/** Return the projection of \p u onto \p d. */
+/// Return the projection of \p u onto \p d.
DMNSN_INLINE dmnsn_vector
dmnsn_vector_proj(dmnsn_vector u, dmnsn_vector d)
{
- /* 1 division, 9 multiplications, 4 additions */
+ // 1 division, 9 multiplications, 4 additions
return dmnsn_vector_mul(dmnsn_vector_dot(u, d)/dmnsn_vector_dot(d, d), d);
}
-/** Return the magnitude of a vector. */
+/// Return the magnitude of a vector.
DMNSN_INLINE double
dmnsn_vector_norm(dmnsn_vector n)
{
- /* 1 sqrt, 3 multiplications, 2 additions */
+ // 1 sqrt, 3 multiplications, 2 additions
return sqrt(dmnsn_vector_dot(n, n));
}
-/** Return the direction of a vector. */
+/// Return the direction of a vector.
DMNSN_INLINE dmnsn_vector
dmnsn_vector_normalized(dmnsn_vector n)
{
- /* 1 sqrt, 3 divisions, 3 multiplications, 2 additions */
+ // 1 sqrt, 3 divisions, 3 multiplications, 2 additions
return dmnsn_vector_div(n, dmnsn_vector_norm(n));
}
-/** Return the component-wise minimum of two vectors. */
+/// Return the component-wise minimum of two vectors.
DMNSN_INLINE dmnsn_vector
dmnsn_vector_min(dmnsn_vector a, dmnsn_vector b)
{
@@ -361,7 +361,7 @@ dmnsn_vector_min(dmnsn_vector a, dmnsn_vector b)
);
}
-/** Return the component-wise maximum of two vectors. */
+/// Return the component-wise maximum of two vectors.
DMNSN_INLINE dmnsn_vector
dmnsn_vector_max(dmnsn_vector a, dmnsn_vector b)
{
@@ -372,17 +372,17 @@ dmnsn_vector_max(dmnsn_vector a, dmnsn_vector b)
);
}
-/** Invert a matrix. */
+/// Invert a matrix.
dmnsn_matrix dmnsn_matrix_inverse(dmnsn_matrix A);
-/** Multiply two matricies. */
+/// Multiply two matricies.
dmnsn_matrix dmnsn_matrix_mul(dmnsn_matrix lhs, dmnsn_matrix rhs);
-/** Transform a point by a matrix. */
+/// Transform a point by a matrix.
DMNSN_INLINE dmnsn_vector
dmnsn_transform_point(dmnsn_matrix T, dmnsn_vector v)
{
- /* 9 multiplications, 9 additions */
+ // 9 multiplications, 9 additions
dmnsn_vector r;
r.x = T.n[0][0]*v.x + T.n[0][1]*v.y + T.n[0][2]*v.z + T.n[0][3];
r.y = T.n[1][0]*v.x + T.n[1][1]*v.y + T.n[1][2]*v.z + T.n[1][3];
@@ -390,11 +390,11 @@ dmnsn_transform_point(dmnsn_matrix T, dmnsn_vector v)
return r;
}
-/** Transform a direction by a matrix. */
+/// Transform a direction by a matrix.
DMNSN_INLINE dmnsn_vector
dmnsn_transform_direction(dmnsn_matrix T, dmnsn_vector v)
{
- /* 9 multiplications, 6 additions */
+ // 9 multiplications, 6 additions
dmnsn_vector r;
r.x = T.n[0][0]*v.x + T.n[0][1]*v.y + T.n[0][2]*v.z;
r.y = T.n[1][0]*v.x + T.n[1][1]*v.y + T.n[1][2]*v.z;
@@ -411,8 +411,7 @@ dmnsn_transform_direction(dmnsn_matrix T, dmnsn_vector v)
DMNSN_INLINE dmnsn_vector
dmnsn_transform_normal(dmnsn_matrix Tinv, dmnsn_vector v)
{
- /* Multiply by the transpose of the inverse
- (9 multiplications, 6 additions) */
+ // Multiply by the transpose of the inverse (9 multiplications, 6 additions)
dmnsn_vector r;
r.x = Tinv.n[0][0]*v.x + Tinv.n[1][0]*v.y + Tinv.n[2][0]*v.z;
r.y = Tinv.n[0][1]*v.x + Tinv.n[1][1]*v.y + Tinv.n[2][1]*v.z;
@@ -420,7 +419,7 @@ dmnsn_transform_normal(dmnsn_matrix Tinv, dmnsn_vector v)
return r;
}
-/** Transform a bounding box by a matrix. */
+/// Transform a bounding box by a matrix.
dmnsn_bounding_box dmnsn_transform_bounding_box(dmnsn_matrix T,
dmnsn_bounding_box box);
@@ -432,7 +431,7 @@ dmnsn_bounding_box dmnsn_transform_bounding_box(dmnsn_matrix T,
DMNSN_INLINE dmnsn_line
dmnsn_transform_line(dmnsn_matrix T, dmnsn_line l)
{
- /* 18 multiplications, 24 additions */
+ // 18 multiplications, 24 additions
dmnsn_line ret;
ret.x0 = dmnsn_transform_point(T, l.x0);
ret.n = dmnsn_transform_direction(T, l.n);
@@ -449,7 +448,7 @@ dmnsn_line_point(dmnsn_line l, double t)
return dmnsn_vector_add(l.x0, dmnsn_vector_mul(t, l.n));
}
-/** Add epsilon*l.n to l.x0, to avoid self-intersections. */
+/// Add epsilon*l.n to l.x0, to avoid self-intersections.
DMNSN_INLINE dmnsn_line
dmnsn_line_add_epsilon(dmnsn_line l)
{
@@ -478,7 +477,7 @@ dmnsn_symmetric_bounding_box(dmnsn_vector r)
return box;
}
-/** Return whether \p p is within the axis-aligned bounding box. */
+/// Return whether \p p is within the axis-aligned bounding box.
DMNSN_INLINE bool
dmnsn_bounding_box_contains(dmnsn_bounding_box box, dmnsn_vector p)
{
@@ -486,7 +485,7 @@ dmnsn_bounding_box_contains(dmnsn_bounding_box box, dmnsn_vector p)
&& (p.x <= box.max.x && p.y <= box.max.y && p.z <= box.max.z);
}
-/** Return whether a bounding box is infinite. */
+/// Return whether a bounding box is infinite.
DMNSN_INLINE bool
dmnsn_bounding_box_is_infinite(dmnsn_bounding_box box)
{
@@ -509,14 +508,14 @@ dmnsn_bounding_box_swallow(dmnsn_bounding_box box, dmnsn_vector point)
return ret;
}
-/** Return whether a vector contains any NaN components. */
+/// Return whether a vector contains any NaN components.
DMNSN_INLINE bool
dmnsn_vector_isnan(dmnsn_vector v)
{
return isnan(v.x) || isnan(v.y) || isnan(v.z);
}
-/** Return whether a matrix contains any NaN components. */
+/// Return whether a matrix contains any NaN components.
DMNSN_INLINE bool
dmnsn_matrix_isnan(dmnsn_matrix m)
{
@@ -531,14 +530,14 @@ dmnsn_matrix_isnan(dmnsn_matrix m)
return false;
}
-/** Return whether a line contains any NaN entries. */
+/// Return whether a line contains any NaN entries.
DMNSN_INLINE bool
dmnsn_line_isnan(dmnsn_line l)
{
return dmnsn_vector_isnan(l.x0) || dmnsn_vector_isnan(l.n);
}
-/** Return whether a bounding box has any NaN components. */
+/// Return whether a bounding box has any NaN components.
DMNSN_INLINE bool
dmnsn_bounding_box_isnan(dmnsn_bounding_box box)
{