diff options
-rw-r--r-- | libdimension/polynomial.c | 50 |
1 files changed, 20 insertions, 30 deletions
diff --git a/libdimension/polynomial.c b/libdimension/polynomial.c index e968832..d78361c 100644 --- a/libdimension/polynomial.c +++ b/libdimension/polynomial.c @@ -76,47 +76,38 @@ dmnsn_real_degree(double poly[], size_t degree) return 0; } -/* Improve a root with Newton's method */ -static inline double -dmnsn_improve_root(double poly[], size_t degree, double x) -{ - double dx; - do { - /* Calculate the value of the polynomial and its derivative at once */ - double p = poly[degree], dp = 0.0; - for (ssize_t i = degree - 1; i >= 0; --i) { - dp = dp*x + p; - p = p*x + poly[i]; - } - - dx = p/dp; - x -= dx; - } while (fabs(dx/x) > dmnsn_epsilon); - - return x; -} - -/* Use the method of bisection to find a root in a range that contains exactly - one root, counting multiplicity */ +/* Use the false position method to find a root in a range that contains exactly + one root */ static inline double dmnsn_bisect_root(double poly[], size_t degree, double min, double max) { double evmin = dmnsn_evaluate_polynomial(poly, degree, min); double evmax = dmnsn_evaluate_polynomial(poly, degree, max); + double mid = 0.0, evmid; + int lastsign = -1; - while (max - min > dmnsn_epsilon) { - double mid = (min + max)/2.0; - double evmid = dmnsn_evaluate_polynomial(poly, degree, mid); - if (dmnsn_signbit(evmid) == dmnsn_signbit(evmax)) { + do { + mid = (min*evmax - max*evmin)/(evmax - evmin); + evmid = dmnsn_evaluate_polynomial(poly, degree, mid); + int sign = dmnsn_signbit(evmid); + if (sign == dmnsn_signbit(evmax)) { max = mid; evmax = evmid; + if (sign == lastsign) { + evmin /= 2.0; + } } else { min = mid; evmin = evmid; + if (sign == lastsign) { + evmax /= 2.0; + } } - } - return (min + max)/2.0; + lastsign = sign; + } while (fabs(evmid) > fabs(mid)*dmnsn_epsilon); + + return mid; } /* Use synthetic division to eliminate the root `r' from poly[] */ @@ -158,7 +149,7 @@ dmnsn_descartes_rule(double poly[], size_t degree) } /* Get the (n k) binomial coefficient */ -static double +static inline double dmnsn_binom(size_t n, size_t k) { if (k > n - k) { @@ -270,7 +261,6 @@ dmnsn_solve_polynomial(double poly[], size_t degree, double x[]) /* Bisect within the found range */ double r = dmnsn_bisect_root(p, degree, ranges[j][0], ranges[j][1]); - r = dmnsn_improve_root(p, degree, r); /* Use synthetic division to eliminate the root `r' */ dmnsn_eliminate_root(p, °ree, r); |