1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
|
// Copyright © Tavian Barnes <tavianator@tavianator.com>
// SPDX-License-Identifier: 0BSD
/**
* This is an implementation of a "qp trie," as documented at
* https://dotat.at/prog/qp/README.html
*
* An uncompressed trie over the dataset {AAAA, AADD, ABCD, DDAA, DDDD} would
* look like
*
* A A A A
* ●───→●───→●───→●───→○
* │ │ │ D D
* │ │ └───→●───→○
* │ │ B C D
* │ └───→●───→●───→○
* │ D D A A
* └───→●───→●───→●───→○
* │ D D
* └───→●───→○
*
* A compressed (PATRICIA) trie collapses internal nodes that have only a single
* child, like this:
*
* A A AA
* ●───→●───→●────→○
* │ │ │ DD
* │ │ └────→○
* │ │ BCD
* │ └─────→○
* │ DD AA
* └────→●────→○
* │ DD
* └────→○
*
* The nodes can be compressed further by dropping the actual compressed
* sequences from the nodes, storing it only in the leaves. This is the
* technique applied in QP tries, and the crit-bit trees that inspired them
* (https://cr.yp.to/critbit.html). Only the index to test, and the values to
* branch on, need to be stored in each node.
*
* A A A
* 0───→1───→2───→AAAA
* │ │ │ D
* │ │ └───→AADD
* │ │ B
* │ └───→ABCD
* │ D A
* └───→2───→DDAA
* │ D
* └───→DDDD
*
* Nodes are represented very compactly. Rather than a dense array of children,
* a sparse array of only the non-NULL children directly follows the node in
* memory. A bitmap is used to track which children exist.
*
* ┌────────────┐
* │ [4] [3] [2][1][0] ←─ children
* │ ↓ ↓ ↓ ↓ ↓
* │ 14 10 6 3 0 ←─ sparse index
* │ ↓ ↓ ↓ ↓ ↓
* │ 0100010001001001 ←─ bitmap
* │
* │ To convert a sparse index to a dense index, mask off the bits above it, and
* │ count the remaining bits.
* │
* │ 10 ←─ sparse index
* │ ↓
* │ 0000001111111111 ←─ mask
* │ & 0100010001001001 ←─ bitmap
* │ ────────────────
* │ = 0000000001001001
* │ └──┼──┘
* │ [3] ←─ dense index
* └───────────────────┘
*
* This implementation tests a whole nibble (half byte/hex digit) at every
* branch, so the bitmap takes up 16 bits. The remainder of a machine word is
* used to hold the offset, which severely constrains its range on 32-bit
* platforms. As a workaround, we store relative instead of absolute offsets,
* and insert intermediate singleton "jump" nodes when necessary.
*/
#include "trie.h"
#include "config.h"
#include "diag.h"
#include "int.h"
#include "list.h"
#include <assert.h>
#include <limits.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
bfs_static_assert(CHAR_BIT == 8);
#if BFS_TARGET_CLONES && (__i386__ || __x86_64__)
# define TARGET_CLONES_POPCNT __attribute__((target_clones("popcnt", "default")))
#else
# define TARGET_CLONES_POPCNT
#endif
/** Number of bits for the sparse array bitmap, aka the range of a nibble. */
#define BITMAP_BITS 16
/** The number of remaining bits in a word, to hold the offset. */
#define OFFSET_BITS (sizeof(size_t)*CHAR_BIT - BITMAP_BITS)
/** The highest representable offset (only 64k on a 32-bit architecture). */
#define OFFSET_MAX (((size_t)1 << OFFSET_BITS) - 1)
/**
* An internal node of the trie.
*/
struct trie_node {
/**
* A bitmap that hold which indices exist in the sparse children array.
* Bit i will be set if a child exists at logical index i, and its index
* into the array will be popcount(bitmap & ((1 << i) - 1)).
*/
size_t bitmap : BITMAP_BITS;
/**
* The offset into the key in nibbles. This is relative to the parent
* node, to support offsets larger than OFFSET_MAX.
*/
size_t offset : OFFSET_BITS;
/**
* Flexible array of children. Each pointer uses the lowest bit as a
* tag to distinguish internal nodes from leaves. This is safe as long
* as all dynamic allocations are aligned to more than a single byte.
*/
uintptr_t children[];
};
/** Check if an encoded pointer is to a leaf. */
static bool trie_is_leaf(uintptr_t ptr) {
return ptr & 1;
}
/** Decode a pointer to a leaf. */
static struct trie_leaf *trie_decode_leaf(uintptr_t ptr) {
assert(trie_is_leaf(ptr));
return (struct trie_leaf *)(ptr ^ 1);
}
/** Encode a pointer to a leaf. */
static uintptr_t trie_encode_leaf(const struct trie_leaf *leaf) {
uintptr_t ptr = (uintptr_t)leaf ^ 1;
assert(trie_is_leaf(ptr));
return ptr;
}
/** Decode a pointer to an internal node. */
static struct trie_node *trie_decode_node(uintptr_t ptr) {
assert(!trie_is_leaf(ptr));
return (struct trie_node *)ptr;
}
/** Encode a pointer to an internal node. */
static uintptr_t trie_encode_node(const struct trie_node *node) {
uintptr_t ptr = (uintptr_t)node;
assert(!trie_is_leaf(ptr));
return ptr;
}
void trie_init(struct trie *trie) {
trie->root = 0;
LIST_INIT(trie);
}
/** Check if a number is a power of two. */
static bool is_power_of_two(size_t n) {
return (n & (n - 1)) == 0;
}
/** Compute the popcount (Hamming weight) of a bitmap. */
static unsigned int trie_popcount(unsigned int n) {
#if __GNUC__
return __builtin_popcount(n);
#else
// See https://en.wikipedia.org/wiki/Hamming_weight#Efficient_implementation
n -= (n >> 1) & 0x5555;
n = (n & 0x3333) + ((n >> 2) & 0x3333);
n = (n + (n >> 4)) & 0x0F0F;
n = (n + (n >> 8)) & 0xFF;
return n;
#endif
}
/** Extract the nibble at a certain offset from a byte sequence. */
static unsigned char trie_key_nibble(const void *key, size_t offset) {
const unsigned char *bytes = key;
size_t byte = offset >> 1;
// A branchless version of
// if (offset & 1) {
// return bytes[byte] >> 4;
// } else {
// return bytes[byte] & 0xF;
// }
unsigned int shift = (offset & 1) << 2;
return (bytes[byte] >> shift) & 0xF;
}
/**
* Finds a leaf in the trie that matches the key at every branch. If the key
* exists in the trie, the representative will match the searched key. But
* since only branch points are tested, it can be different from the key. In
* that case, the first mismatch between the key and the representative will be
* the depth at which to make a new branch to insert the key.
*/
TARGET_CLONES_POPCNT
static struct trie_leaf *trie_representative(const struct trie *trie, const void *key, size_t length) {
uintptr_t ptr = trie->root;
if (!ptr) {
return NULL;
}
size_t offset = 0;
while (!trie_is_leaf(ptr)) {
struct trie_node *node = trie_decode_node(ptr);
offset += node->offset;
unsigned int index = 0;
if ((offset >> 1) < length) {
unsigned char nibble = trie_key_nibble(key, offset);
unsigned int bit = 1U << nibble;
if (node->bitmap & bit) {
index = trie_popcount(node->bitmap & (bit - 1));
}
}
ptr = node->children[index];
}
return trie_decode_leaf(ptr);
}
struct trie_leaf *trie_find_str(const struct trie *trie, const char *key) {
return trie_find_mem(trie, key, strlen(key) + 1);
}
struct trie_leaf *trie_find_mem(const struct trie *trie, const void *key, size_t length) {
struct trie_leaf *rep = trie_representative(trie, key, length);
if (rep && rep->length == length && memcmp(rep->key, key, length) == 0) {
return rep;
} else {
return NULL;
}
}
struct trie_leaf *trie_find_postfix(const struct trie *trie, const char *key) {
size_t length = strlen(key);
struct trie_leaf *rep = trie_representative(trie, key, length + 1);
if (rep && rep->length >= length && memcmp(rep->key, key, length) == 0) {
return rep;
} else {
return NULL;
}
}
/**
* Find a leaf that may end at the current node.
*/
static struct trie_leaf *trie_terminal_leaf(const struct trie_node *node) {
// Finding a terminating NUL byte may take two nibbles
for (int i = 0; i < 2; ++i) {
if (!(node->bitmap & 1)) {
break;
}
uintptr_t ptr = node->children[0];
if (trie_is_leaf(ptr)) {
return trie_decode_leaf(ptr);
} else {
node = trie_decode_node(ptr);
}
}
return NULL;
}
/** Check if a leaf is a prefix of a search key. */
static bool trie_check_prefix(struct trie_leaf *leaf, size_t skip, const char *key, size_t length) {
if (leaf && leaf->length <= length) {
return memcmp(key + skip, leaf->key + skip, leaf->length - skip - 1) == 0;
} else {
return false;
}
}
TARGET_CLONES_POPCNT
static struct trie_leaf *trie_find_prefix_impl(const struct trie *trie, const char *key) {
uintptr_t ptr = trie->root;
if (!ptr) {
return NULL;
}
struct trie_leaf *best = NULL;
size_t skip = 0;
size_t length = strlen(key) + 1;
size_t offset = 0;
while (!trie_is_leaf(ptr)) {
struct trie_node *node = trie_decode_node(ptr);
offset += node->offset;
if ((offset >> 1) >= length) {
return best;
}
struct trie_leaf *leaf = trie_terminal_leaf(node);
if (trie_check_prefix(leaf, skip, key, length)) {
best = leaf;
skip = offset >> 1;
}
unsigned char nibble = trie_key_nibble(key, offset);
unsigned int bit = 1U << nibble;
if (node->bitmap & bit) {
unsigned int index = trie_popcount(node->bitmap & (bit - 1));
ptr = node->children[index];
} else {
return best;
}
}
struct trie_leaf *leaf = trie_decode_leaf(ptr);
if (trie_check_prefix(leaf, skip, key, length)) {
best = leaf;
}
return best;
}
struct trie_leaf *trie_find_prefix(const struct trie *trie, const char *key) {
return trie_find_prefix_impl(trie, key);
}
/** Create a new leaf, holding a copy of the given key. */
static struct trie_leaf *trie_leaf_alloc(struct trie *trie, const void *key, size_t length) {
struct trie_leaf *leaf = malloc(flex_sizeof(struct trie_leaf, key, length));
if (!leaf) {
return NULL;
}
LIST_APPEND(trie, leaf);
leaf->value = NULL;
leaf->length = length;
memcpy(leaf->key, key, length);
return leaf;
}
/** Free a leaf. */
static void trie_leaf_free(struct trie *trie, struct trie_leaf *leaf) {
LIST_REMOVE(trie, leaf);
free(leaf);
}
/** Compute the size of a trie node with a certain number of children. */
static size_t trie_node_size(unsigned int size) {
// Empty nodes aren't supported
assert(size > 0);
// Node size must be a power of two
assert(is_power_of_two(size));
return flex_sizeof(struct trie_node, children, size);
}
#if ENDIAN_NATIVE == ENDIAN_LITTLE
# define TRIE_BSWAP(n) (n)
#elif ENDIAN_NATIVE == ENDIAN_BIG
# define TRIE_BSWAP(n) bswap(n)
#endif
#ifdef TRIE_BSWAP
# if SIZE_WIDTH == LLONG_WIDTH
# define TRIE_CTZ(n) __builtin_ctzll(n)
# elif SiZE_WIDTH == LONG_WIDTH
# define TRIE_CTZ(n) __builtin_ctzl(n)
# elif SIZE_WIDTH == INT_WIDTH
# define TRIE_CTZ(n) __builtin_ctz(n)
# endif
#endif
/** Find the offset of the first nibble that differs between two keys. */
static size_t trie_mismatch(const struct trie_leaf *rep, const void *key, size_t length) {
if (!rep) {
return 0;
}
if (rep->length < length) {
length = rep->length;
}
const char *rep_bytes = rep->key;
const char *key_bytes = key;
size_t i = 0;
for (size_t chunk = sizeof(chunk); i + chunk <= length; i += chunk) {
size_t rep_chunk, key_chunk;
memcpy(&rep_chunk, rep_bytes + i, sizeof(rep_chunk));
memcpy(&key_chunk, key_bytes + i, sizeof(key_chunk));
if (rep_chunk != key_chunk) {
#ifdef TRIE_CTZ
size_t diff = TRIE_BSWAP(rep_chunk ^ key_chunk);
i *= 2;
i += TRIE_CTZ(diff) / 4;
return i;
#else
break;
#endif
}
}
for (; i < length; ++i) {
unsigned char diff = rep_bytes[i] ^ key_bytes[i];
if (diff) {
return 2 * i + !(diff & 0xF);
}
}
return 2 * i;
}
/**
* Insert a leaf into a node. The node must not have a child in that position
* already. Effectively takes a subtrie like this:
*
* ptr
* |
* v X
* *--->...
* | Z
* +--->...
*
* and transforms it to:
*
* ptr
* |
* v X
* *--->...
* | Y
* +--->leaf
* | Z
* +--->...
*/
TARGET_CLONES_POPCNT
static struct trie_leaf *trie_node_insert(struct trie *trie, uintptr_t *ptr, struct trie_leaf *leaf, unsigned char nibble) {
struct trie_node *node = trie_decode_node(*ptr);
unsigned int size = trie_popcount(node->bitmap);
// Double the capacity every power of two
if (is_power_of_two(size)) {
node = realloc(node, trie_node_size(2 * size));
if (!node) {
trie_leaf_free(trie, leaf);
return NULL;
}
*ptr = trie_encode_node(node);
}
unsigned int bit = 1U << nibble;
// The child must not already be present
assert(!(node->bitmap & bit));
node->bitmap |= bit;
unsigned int target = trie_popcount(node->bitmap & (bit - 1));
for (size_t i = size; i > target; --i) {
node->children[i] = node->children[i - 1];
}
node->children[target] = trie_encode_leaf(leaf);
return leaf;
}
/**
* When the current offset exceeds OFFSET_MAX, insert "jump" nodes that bridge
* the gap. This function takes a subtrie like this:
*
* ptr
* |
* v
* *--->rep
*
* and changes it to:
*
* ptr ret
* | |
* v v
* *--->*--->rep
*
* so that a new key can be inserted like:
*
* ptr ret
* | |
* v v X
* *--->*--->rep
* | Y
* +--->key
*/
static uintptr_t *trie_jump(uintptr_t *ptr, const char *key, size_t *offset) {
// We only ever need to jump to leaf nodes, since internal nodes are
// guaranteed to be within OFFSET_MAX anyway
assert(trie_is_leaf(*ptr));
struct trie_node *node = malloc(trie_node_size(1));
if (!node) {
return NULL;
}
*offset += OFFSET_MAX;
node->offset = OFFSET_MAX;
unsigned char nibble = trie_key_nibble(key, *offset);
node->bitmap = 1 << nibble;
node->children[0] = *ptr;
*ptr = trie_encode_node(node);
return node->children;
}
/**
* Split a node in the trie. Changes a subtrie like this:
*
* ptr
* |
* v
* *...>--->rep
*
* into this:
*
* ptr
* |
* v X
* *--->*...>--->rep
* | Y
* +--->leaf
*/
static struct trie_leaf *trie_split(struct trie *trie, uintptr_t *ptr, struct trie_leaf *leaf, struct trie_leaf *rep, size_t offset, size_t mismatch) {
unsigned char key_nibble = trie_key_nibble(leaf->key, mismatch);
unsigned char rep_nibble = trie_key_nibble(rep->key, mismatch);
assert(key_nibble != rep_nibble);
struct trie_node *node = malloc(trie_node_size(2));
if (!node) {
trie_leaf_free(trie, leaf);
return NULL;
}
node->bitmap = (1 << key_nibble) | (1 << rep_nibble);
size_t delta = mismatch - offset;
if (!trie_is_leaf(*ptr)) {
struct trie_node *child = trie_decode_node(*ptr);
child->offset -= delta;
}
node->offset = delta;
unsigned int key_index = key_nibble > rep_nibble;
node->children[key_index] = trie_encode_leaf(leaf);
node->children[key_index ^ 1] = *ptr;
*ptr = trie_encode_node(node);
return leaf;
}
struct trie_leaf *trie_insert_str(struct trie *trie, const char *key) {
return trie_insert_mem(trie, key, strlen(key) + 1);
}
TARGET_CLONES_POPCNT
static struct trie_leaf *trie_insert_mem_impl(struct trie *trie, const void *key, size_t length) {
struct trie_leaf *rep = trie_representative(trie, key, length);
size_t mismatch = trie_mismatch(rep, key, length);
if (mismatch >= (length << 1)) {
return rep;
}
struct trie_leaf *leaf = trie_leaf_alloc(trie, key, length);
if (!leaf) {
return NULL;
}
if (!rep) {
trie->root = trie_encode_leaf(leaf);
return leaf;
}
size_t offset = 0;
uintptr_t *ptr = &trie->root;
while (!trie_is_leaf(*ptr)) {
struct trie_node *node = trie_decode_node(*ptr);
if (offset + node->offset > mismatch) {
break;
}
offset += node->offset;
unsigned char nibble = trie_key_nibble(key, offset);
unsigned int bit = 1U << nibble;
if (node->bitmap & bit) {
assert(offset < mismatch);
unsigned int index = trie_popcount(node->bitmap & (bit - 1));
ptr = &node->children[index];
} else {
assert(offset == mismatch);
return trie_node_insert(trie, ptr, leaf, nibble);
}
}
while (mismatch - offset > OFFSET_MAX) {
ptr = trie_jump(ptr, key, &offset);
if (!ptr) {
trie_leaf_free(trie, leaf);
return NULL;
}
}
return trie_split(trie, ptr, leaf, rep, offset, mismatch);
}
struct trie_leaf *trie_insert_mem(struct trie *trie, const void *key, size_t length) {
return trie_insert_mem_impl(trie, key, length);
}
/** Free a chain of singleton nodes. */
static void trie_free_singletons(struct trie *trie, uintptr_t ptr) {
while (!trie_is_leaf(ptr)) {
struct trie_node *node = trie_decode_node(ptr);
// Make sure the bitmap is a power of two, i.e. it has just one child
assert(is_power_of_two(node->bitmap));
ptr = node->children[0];
free(node);
}
trie_leaf_free(trie, trie_decode_leaf(ptr));
}
/**
* Try to collapse a two-child node like:
*
* parent child
* | |
* v v
* *----->*----->*----->leaf
* |
* +----->other
*
* into
*
* parent
* |
* v
* other
*/
static int trie_collapse_node(uintptr_t *parent, struct trie_node *parent_node, unsigned int child_index) {
uintptr_t other = parent_node->children[child_index ^ 1];
if (!trie_is_leaf(other)) {
struct trie_node *other_node = trie_decode_node(other);
if (other_node->offset + parent_node->offset <= OFFSET_MAX) {
other_node->offset += parent_node->offset;
} else {
return -1;
}
}
*parent = other;
free(parent_node);
return 0;
}
TARGET_CLONES_POPCNT
static void trie_remove_impl(struct trie *trie, struct trie_leaf *leaf) {
uintptr_t *child = &trie->root;
uintptr_t *parent = NULL;
unsigned int child_bit = 0, child_index = 0;
size_t offset = 0;
while (!trie_is_leaf(*child)) {
struct trie_node *node = trie_decode_node(*child);
offset += node->offset;
assert((offset >> 1) < leaf->length);
unsigned char nibble = trie_key_nibble(leaf->key, offset);
unsigned int bit = 1U << nibble;
unsigned int bitmap = node->bitmap;
assert(bitmap & bit);
unsigned int index = trie_popcount(bitmap & (bit - 1));
// Advance the parent pointer, unless this node had only one child
if (!is_power_of_two(bitmap)) {
parent = child;
child_bit = bit;
child_index = index;
}
child = &node->children[index];
}
assert(trie_decode_leaf(*child) == leaf);
if (!parent) {
trie_free_singletons(trie, trie->root);
trie->root = 0;
return;
}
struct trie_node *node = trie_decode_node(*parent);
child = node->children + child_index;
trie_free_singletons(trie, *child);
node->bitmap ^= child_bit;
unsigned int parent_size = trie_popcount(node->bitmap);
assert(parent_size > 0);
if (parent_size == 1 && trie_collapse_node(parent, node, child_index) == 0) {
return;
}
if (child_index < parent_size) {
memmove(child, child + 1, (parent_size - child_index)*sizeof(*child));
}
if (is_power_of_two(parent_size)) {
node = realloc(node, trie_node_size(parent_size));
if (node) {
*parent = trie_encode_node(node);
}
}
}
void trie_remove(struct trie *trie, struct trie_leaf *leaf) {
trie_remove_impl(trie, leaf);
}
/** Free an encoded pointer to a node. */
TARGET_CLONES_POPCNT
static void free_trie_ptr(uintptr_t ptr) {
if (trie_is_leaf(ptr)) {
free(trie_decode_leaf(ptr));
} else {
struct trie_node *node = trie_decode_node(ptr);
size_t size = trie_popcount(node->bitmap);
for (size_t i = 0; i < size; ++i) {
free_trie_ptr(node->children[i]);
}
free(node);
}
}
void trie_destroy(struct trie *trie) {
if (trie->root) {
free_trie_ptr(trie->root);
}
}
|