summaryrefslogtreecommitdiffstats
path: root/src/alloc.c
blob: f52b701aa5b64dc35709707137b98f66ddceefd7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
// Copyright © Tavian Barnes <tavianator@tavianator.com>
// SPDX-License-Identifier: 0BSD

#include "alloc.h"

#include "bfs.h"
#include "bit.h"
#include "diag.h"
#include "sanity.h"

#include <errno.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>

/** The largest possible allocation size. */
#if PTRDIFF_MAX < SIZE_MAX / 2
#  define ALLOC_MAX ((size_t)PTRDIFF_MAX)
#else
#  define ALLOC_MAX (SIZE_MAX / 2)
#endif

/** posix_memalign() wrapper. */
static void *xmemalign(size_t align, size_t size) {
	bfs_assert(has_single_bit(align));
	bfs_assert(align >= sizeof(void *));

	// Since https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2072.htm,
	// aligned_alloc() doesn't require the size to be a multiple of align.
	// But the sanitizers don't know about that yet, so always use
	// posix_memalign().
	void *ptr = NULL;
	errno = posix_memalign(&ptr, align, size);
	return ptr;
}

void *alloc(size_t align, size_t size) {
	bfs_assert(has_single_bit(align));

	if (size > ALLOC_MAX) {
		errno = EOVERFLOW;
		return NULL;
	}

	if (align <= alignof(max_align_t)) {
		return malloc(size);
	} else {
		return xmemalign(align, size);
	}
}

void *zalloc(size_t align, size_t size) {
	bfs_assert(has_single_bit(align));

	if (size > ALLOC_MAX) {
		errno = EOVERFLOW;
		return NULL;
	}

	if (align <= alignof(max_align_t)) {
		return calloc(1, size);
	}

	void *ret = xmemalign(align, size);
	if (ret) {
		memset(ret, 0, size);
	}
	return ret;
}

void *xrealloc(void *ptr, size_t align, size_t old_size, size_t new_size) {
	bfs_assert(has_single_bit(align));

	if (new_size == 0) {
		free(ptr);
		return NULL;
	} else if (new_size > ALLOC_MAX) {
		errno = EOVERFLOW;
		return NULL;
	}

	if (align <= alignof(max_align_t)) {
		return realloc(ptr, new_size);
	}

	// There is no aligned_realloc(), so reallocate and copy manually
	void *ret = xmemalign(align, new_size);
	if (!ret) {
		return NULL;
	}

	size_t min_size = old_size < new_size ? old_size : new_size;
	if (min_size) {
		memcpy(ret, ptr, min_size);
	}

	free(ptr);
	return ret;
}

void *reserve(void *ptr, size_t align, size_t size, size_t count) {
	// No need to overflow-check the current size
	size_t old_size = size * count;

	// Capacity is doubled every power of two, from 0→1, 1→2, 2→4, etc.
	// If we stayed within the same size class, reuse ptr.
	if (count & (count - 1)) {
		// Tell sanitizers about the new array element
		sanitize_alloc((char *)ptr + old_size, size);
		errno = 0;
		return ptr;
	}

	// No need to overflow-check; xrealloc() will fail before we overflow
	size_t new_size = count ? 2 * old_size : size;
	void *ret = xrealloc(ptr, align, old_size, new_size);
	if (!ret) {
		// errno is used to communicate success/failure to the RESERVE() macro
		bfs_assert(errno != 0);
		return ptr;
	}

	// Pretend we only allocated one more element
	sanitize_free((char *)ret + old_size + size, new_size - old_size - size);
	errno = 0;
	return ret;
}

/**
 * An arena allocator chunk.
 */
union chunk {
	/**
	 * Free chunks are stored in a singly linked list.  The pointer to the
	 * next chunk is represented by an offset from the chunk immediately
	 * after this one in memory, so that zalloc() correctly initializes a
	 * linked list of chunks (except for the last one).
	 */
	uintptr_t next;

	// char object[];
};

/** Decode the next chunk. */
static union chunk *chunk_next(const struct arena *arena, const union chunk *chunk) {
	uintptr_t base = (uintptr_t)chunk + arena->size;
	return (union chunk *)(base + chunk->next);
}

/** Encode the next chunk. */
static void chunk_set_next(const struct arena *arena, union chunk *chunk, union chunk *next) {
	uintptr_t base = (uintptr_t)chunk + arena->size;
	chunk->next = (uintptr_t)next - base;
}

void arena_init(struct arena *arena, size_t align, size_t size) {
	bfs_assert(has_single_bit(align));
	bfs_assert(is_aligned(align, size));

	if (align < alignof(union chunk)) {
		align = alignof(union chunk);
	}
	if (size < sizeof(union chunk)) {
		size = sizeof(union chunk);
	}
	bfs_assert(is_aligned(align, size));

	arena->chunks = NULL;
	arena->nslabs = 0;
	arena->slabs = NULL;
	arena->align = align;
	arena->size = size;
}

/** Get the size of the ith slab. */
static size_t slab_size(const struct arena *arena, size_t i) {
	// Make the initial allocation size ~4K
	size_t size = 4096;
	if (size < arena->size) {
		size = arena->size;
	}
	// Trim off the excess
	size -= size % arena->size;
	// Double the size for every slab
	size <<= i;
	return size;
}

/** Allocate a new slab. */
_cold
static int slab_alloc(struct arena *arena) {
	size_t size = slab_size(arena, arena->nslabs);

	// Allocate the slab
	void *slab = zalloc(arena->align, size);
	if (!slab) {
		return -1;
	}

	// Grow the slab array
	void **pslab = RESERVE(void *, &arena->slabs, &arena->nslabs);
	if (!pslab) {
		free(slab);
		return -1;
	}

	// Fix the last chunk->next offset
	void *last = (char *)slab + size - arena->size;
	chunk_set_next(arena, last, arena->chunks);

	// We can rely on zero-initialized slabs, but others shouldn't
	sanitize_uninit(slab, size);

	arena->chunks = *pslab = slab;
	return 0;
}

void *arena_alloc(struct arena *arena) {
	if (!arena->chunks && slab_alloc(arena) != 0) {
		return NULL;
	}

	union chunk *chunk = arena->chunks;
	sanitize_alloc(chunk, arena->size);

	sanitize_init(chunk);
	arena->chunks = chunk_next(arena, chunk);
	sanitize_uninit(chunk, arena->size);

	return chunk;
}

/** Check if a pointer comes from this arena. */
static bool arena_contains(const struct arena *arena, void *ptr) {
	uintptr_t addr = (uintptr_t)ptr;

	for (size_t i = 0; i < arena->nslabs; ++i) {
		uintptr_t start = (uintptr_t)arena->slabs[i];
		uintptr_t end = start + slab_size(arena, i);
		if (addr >= start && addr < end) {
			return true;
		}
	}

	return false;
}

void arena_free(struct arena *arena, void *ptr) {
	bfs_assert(arena_contains(arena, ptr));

	union chunk *chunk = ptr;
	chunk_set_next(arena, chunk, arena->chunks);
	arena->chunks = chunk;
	sanitize_uninit(chunk, arena->size);
	sanitize_free(chunk, arena->size);
}

void arena_clear(struct arena *arena) {
	for (size_t i = 0; i < arena->nslabs; ++i) {
		free(arena->slabs[i]);
	}
	free(arena->slabs);

	arena->chunks = NULL;
	arena->nslabs = 0;
	arena->slabs = NULL;
}

void arena_destroy(struct arena *arena) {
	arena_clear(arena);
	sanitize_uninit(arena);
}

void varena_init(struct varena *varena, size_t align, size_t offset, size_t size) {
	varena->align = align;
	varena->offset = offset;
	varena->size = size;
	varena->narenas = 0;
	varena->arenas = NULL;

	// The smallest size class is at least as many as fit in the smallest
	// aligned allocation size
	size_t min_count = (flex_size(align, offset, size, 1) - offset + size - 1) / size;
	varena->shift = bit_width(min_count - 1);
}

/** Get the size class for the given array length. */
static size_t varena_size_class(struct varena *varena, size_t count) {
	// Since powers of two are common array lengths, make them the
	// (inclusive) upper bound for each size class
	return bit_width((count - !!count) >> varena->shift);
}

/** Get the exact size of a flexible struct. */
static size_t varena_exact_size(const struct varena *varena, size_t count) {
	return flex_size(varena->align, varena->offset, varena->size, count);
}

/** Get the arena for the given array length. */
static struct arena *varena_get(struct varena *varena, size_t count) {
	size_t i = varena_size_class(varena, count);

	while (i >= varena->narenas) {
		size_t j = varena->narenas;
		struct arena *arena = RESERVE(struct arena, &varena->arenas, &varena->narenas);
		if (!arena) {
			return NULL;
		}

		size_t shift = j + varena->shift;
		size_t size = varena_exact_size(varena, (size_t)1 << shift);
		arena_init(arena, varena->align, size);
	}

	return &varena->arenas[i];
}

/** Get the arena containing a given pointer. */
static struct arena *varena_find(struct varena *varena, void *ptr) {
	for (size_t i = 0; i < varena->narenas; ++i) {
		struct arena *arena = &varena->arenas[i];
		if (arena_contains(arena, ptr)) {
			return arena;
		}
	}

	bfs_abort("No arena contains %p", ptr);
}

void *varena_alloc(struct varena *varena, size_t count) {
	struct arena *arena = varena_get(varena, count);
	if (!arena) {
		return NULL;
	}

	void *ret = arena_alloc(arena);
	if (!ret) {
		return NULL;
	}

	// Tell the sanitizers the exact size of the allocated struct
	sanitize_free(ret, arena->size);
	sanitize_alloc(ret, varena_exact_size(varena, count));

	return ret;
}

void *varena_realloc(struct varena *varena, void *ptr, size_t count) {
	struct arena *new_arena = varena_get(varena, count);
	struct arena *old_arena = varena_find(varena, ptr);
	if (!new_arena) {
		return NULL;
	}

	size_t new_size = new_arena->size;
	size_t new_exact_size = varena_exact_size(varena, count);

	void *ret;
	if (new_arena == old_arena) {
		ret = ptr;
		goto done;
	}

	ret = arena_alloc(new_arena);
	if (!ret) {
		return NULL;
	}

	size_t old_size = old_arena->size;
	sanitize_alloc(ptr, old_size);

	size_t min_size = new_size < old_size ? new_size : old_size;
	memcpy(ret, ptr, min_size);

	arena_free(old_arena, ptr);
done:
	sanitize_free(ret, new_size);
	sanitize_alloc(ret, new_exact_size);
	return ret;
}

void *varena_grow(struct varena *varena, void *ptr, size_t *count) {
	size_t old_count = *count;

	// Round up to the limit of the current size class.  If we're already at
	// the limit, go to the next size class.
	size_t new_shift = varena_size_class(varena, old_count + 1) + varena->shift;
	size_t new_count = (size_t)1 << new_shift;

	ptr = varena_realloc(varena, ptr, new_count);
	if (ptr) {
		*count = new_count;
	}
	return ptr;
}

void varena_free(struct varena *varena, void *ptr) {
	struct arena *arena = varena_find(varena, ptr);
	arena_free(arena, ptr);
}

void varena_clear(struct varena *varena) {
	for (size_t i = 0; i < varena->narenas; ++i) {
		arena_clear(&varena->arenas[i]);
	}
}

void varena_destroy(struct varena *varena) {
	for (size_t i = 0; i < varena->narenas; ++i) {
		arena_destroy(&varena->arenas[i]);
	}
	free(varena->arenas);
	sanitize_uninit(varena);
}