1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
|
//! Benchmark for various NearestNeighbors implementations.
use acap::euclid::Euclidean;
use acap::exhaustive::ExhaustiveSearch;
use acap::kd::{FlatKdTree, KdTree};
use acap::vp::{FlatVpTree, VpTree};
use acap::NearestNeighbors;
use criterion::{black_box, criterion_group, criterion_main, BatchSize, Criterion};
use std::iter::FromIterator;
type Point = Euclidean<[f32; 3]>;
/// Generates a spiral used as the benchmark data set.
fn spiral() -> Vec<Point> {
let mut points = Vec::new();
let size = 1000;
let turns = 10.0;
for i in 0..size {
let y = 2.0 * (i as f32) / (size as f32) - 1.0;
let m = (1.0 - y * y).sqrt();
let theta = turns * y * std::f32::consts::PI;
let (sin, cos) = theta.sin_cos();
let x = m * cos * cos;
let z = m * sin * cos;
points.push(Euclidean([x, y, z]));
}
points
}
fn bench_creation(c: &mut Criterion) {
let points = black_box(spiral());
let mut group = c.benchmark_group("Creation");
macro_rules! bench {
($type:ident) => {
group.bench_function(stringify!($type), |b| b.iter_batched(
|| points.clone(),
|points| $type::from_iter(points),
BatchSize::SmallInput,
));
};
}
bench!(ExhaustiveSearch);
bench!(VpTree);
bench!(FlatVpTree);
bench!(KdTree);
bench!(FlatKdTree);
group.finish();
}
fn bench_nearest_neighbors(c: &mut Criterion) {
let points = black_box(spiral());
let target = black_box(Euclidean([0.0, 0.0, 0.0]));
macro_rules! bench {
($type:ident) => {
let mut group = c.benchmark_group(stringify!($type));
let index = $type::from_iter(points.clone());
group.bench_function("nearest", |b| b.iter(
|| index.nearest(&target)
));
group.bench_function("nearest_within", |b| b.iter(
|| index.nearest_within(&target, 0.1)
));
group.bench_function("k_nearest", |b| b.iter(
|| index.k_nearest(&target, 3)
));
group.bench_function("k_nearest_within", |b| b.iter(
|| index.k_nearest_within(&target, 3, 0.1)
));
group.bench_function("merge_k_nearest", |b| b.iter_batched(
|| Vec::with_capacity(3),
|mut n| {
index.merge_k_nearest(&target, 3, &mut n);
n
},
BatchSize::SmallInput,
));
group.bench_function("merge_k_nearest_within", |b| b.iter_batched(
|| Vec::with_capacity(3),
|mut n| {
index.merge_k_nearest_within(&target, 3, 0.1, &mut n);
n
},
BatchSize::SmallInput,
));
group.finish();
};
}
bench!(ExhaustiveSearch);
bench!(VpTree);
bench!(FlatVpTree);
bench!(KdTree);
bench!(FlatKdTree);
}
criterion_group!(benches, bench_creation, bench_nearest_neighbors);
criterion_main!(benches);
|