diff options
author | Tavian Barnes <tavianator@tavianator.com> | 2014-08-19 17:10:03 -0400 |
---|---|---|
committer | Tavian Barnes <tavianator@tavianator.com> | 2015-10-25 11:03:56 -0400 |
commit | 7b09710392d35fb55b52031d447a542d99fc6b4b (patch) | |
tree | 270eb927ee8c52ceeb99926ebf4843704775a610 /libdimension/dimension/geometry.h | |
parent | 200c86b91ea7063d35be3bffc11c5da53c054653 (diff) | |
download | dimension-7b09710392d35fb55b52031d447a542d99fc6b4b.tar.xz |
Modularize the libdimension codebase.
Diffstat (limited to 'libdimension/dimension/geometry.h')
-rw-r--r-- | libdimension/dimension/geometry.h | 500 |
1 files changed, 0 insertions, 500 deletions
diff --git a/libdimension/dimension/geometry.h b/libdimension/dimension/geometry.h deleted file mode 100644 index 2ea10ca..0000000 --- a/libdimension/dimension/geometry.h +++ /dev/null @@ -1,500 +0,0 @@ -/************************************************************************* - * Copyright (C) 2009-2014 Tavian Barnes <tavianator@tavianator.com> * - * * - * This file is part of The Dimension Library. * - * * - * The Dimension Library is free software; you can redistribute it and/ * - * or modify it under the terms of the GNU Lesser General Public License * - * as published by the Free Software Foundation; either version 3 of the * - * License, or (at your option) any later version. * - * * - * The Dimension Library is distributed in the hope that it will be * - * useful, but WITHOUT ANY WARRANTY; without even the implied warranty * - * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * - * Lesser General Public License for more details. * - * * - * You should have received a copy of the GNU Lesser General Public * - * License along with this program. If not, see * - * <http://www.gnu.org/licenses/>. * - *************************************************************************/ - -/** - * @file - * Core geometric types like vectors, matricies, and rays. - */ - -#include <math.h> -#include <stdbool.h> - -/** A vector in 3 dimensions. */ -typedef struct dmnsn_vector { - double x; /**< The x component. */ - double y; /**< The y component. */ - double z; /**< The z component. */ -} dmnsn_vector; - -/** A standard format string for vectors. */ -#define DMNSN_VECTOR_FORMAT "<%g, %g, %g>" -/** The appropriate arguements to printf() a vector. */ -#define DMNSN_VECTOR_PRINTF(v) (v).x, (v).y, (v).z - -/** A 4x4 affine transformation matrix, with implied [0 0 0 1] bottom row. */ -typedef struct dmnsn_matrix { - double n[3][4]; /**< The matrix elements in row-major order. */ -} dmnsn_matrix; - -/** A standard format string for matricies. */ -#define DMNSN_MATRIX_FORMAT \ - "[%g\t%g\t%g\t%g]\n" \ - "[%g\t%g\t%g\t%g]\n" \ - "[%g\t%g\t%g\t%g]\n" \ - "[%g\t%g\t%g\t%g]" -/** The appropriate arguements to printf() a matrix. */ -#define DMNSN_MATRIX_PRINTF(m) \ - (m).n[0][0], (m).n[0][1], (m).n[0][2], (m).n[0][3], \ - (m).n[1][0], (m).n[1][1], (m).n[1][2], (m).n[1][3], \ - (m).n[2][0], (m).n[2][1], (m).n[2][2], (m).n[2][3], \ - 0.0, 0.0, 0.0, 1.0 - -/** A line, or ray. */ -typedef struct dmnsn_line { - dmnsn_vector x0; /**< A point on the line. */ - dmnsn_vector n; /**< A normal vector; the direction of the line. */ -} dmnsn_line; - -/** A standard format string for lines. */ -#define DMNSN_LINE_FORMAT "(<%g, %g, %g> + t*<%g, %g, %g>)" -/** The appropriate arguements to printf() a line. */ -#define DMNSN_LINE_PRINTF(l) \ - DMNSN_VECTOR_PRINTF((l).x0), DMNSN_VECTOR_PRINTF((l).n) - -/** An axis-aligned bounding box (AABB). */ -typedef struct dmnsn_bounding_box { - dmnsn_vector min; /**< The coordinate-wise minimum extent of the box. */ - dmnsn_vector max; /**< The coordinate-wise maximum extent of the box. */ -} dmnsn_bounding_box; - -/** A standard format string for bounding boxes. */ -#define DMNSN_BOUNDING_BOX_FORMAT "(<%g, %g, %g> ==> <%g, %g, %g>)" -/** The appropriate arguements to printf() a bounding box. */ -#define DMNSN_BOUNDING_BOX_PRINTF(box) \ - DMNSN_VECTOR_PRINTF((box).min), DMNSN_VECTOR_PRINTF((box).max) - -/* Constants */ - -/** The zero vector. */ -static const dmnsn_vector dmnsn_zero = { 0.0, 0.0, 0.0 }; -/** The x vector. */ -static const dmnsn_vector dmnsn_x = { 1.0, 0.0, 0.0 }; -/** The y vector. */ -static const dmnsn_vector dmnsn_y = { 0.0, 1.0, 0.0 }; -/** The z vector. */ -static const dmnsn_vector dmnsn_z = { 0.0, 0.0, 1.0 }; - -/* Shorthand for vector/matrix construction */ - -/** Construct a new vector. */ -DMNSN_INLINE dmnsn_vector -dmnsn_new_vector(double x, double y, double z) -{ - dmnsn_vector v = { x, y, z }; - return v; -} - -/** Construct a new transformation matrix. */ -DMNSN_INLINE dmnsn_matrix -dmnsn_new_matrix(double a0, double a1, double a2, double a3, - double b0, double b1, double b2, double b3, - double c0, double c1, double c2, double c3) -{ - dmnsn_matrix m = { { { a0, a1, a2, a3 }, - { b0, b1, b2, b3 }, - { c0, c1, c2, c3 } } }; - return m; -} - -/** Construct a new transformation matrix from column vectors. */ -DMNSN_INLINE dmnsn_matrix -dmnsn_new_matrix4(dmnsn_vector a, dmnsn_vector b, dmnsn_vector c, - dmnsn_vector d) -{ - dmnsn_matrix m = { { { a.x, b.x, c.x, d.x }, - { a.y, b.y, c.y, d.y }, - { a.z, b.z, c.z, d.z } } }; - return m; -} - -/** Extract column vectors from a matrix. */ -DMNSN_INLINE dmnsn_vector -dmnsn_matrix_column(dmnsn_matrix M, unsigned int i) -{ - return dmnsn_new_vector(M.n[0][i], M.n[1][i], M.n[2][i]); -} - -/** Return the identity matrix. */ -dmnsn_matrix dmnsn_identity_matrix(void); - -/** - * A scale transformation. - * @param[in] s A vector with components representing the scaling factor in - * each axis. - * @return The transformation matrix. - */ -dmnsn_matrix dmnsn_scale_matrix(dmnsn_vector s); -/** - * A translation. - * @param[in] d The vector to translate by. - * @return The transformation matrix. - */ -dmnsn_matrix dmnsn_translation_matrix(dmnsn_vector d); -/** - * A left-handed rotation. - * @param[in] theta A vector representing an axis and angle. - * @f$ axis = \vec{\theta}/|\vec{\theta}| @f$, - * @f$ angle = |\vec{\theta}| @f$ - * @return The transformation matrix. - */ -dmnsn_matrix dmnsn_rotation_matrix(dmnsn_vector theta); -/** - * An alignment matrix. - * @param[in] from The initial vector. - * @param[in] to The desired direction. - * @param[in] axis1 The first axis about which to rotate. - * @param[in] axis2 The second axis about which to rotate. - * @return A transformation matrix that will rotate \p from to \p to. - */ -dmnsn_matrix dmnsn_alignment_matrix(dmnsn_vector from, dmnsn_vector to, - dmnsn_vector axis1, dmnsn_vector axis2); - -/** - * Construct a new line. - * @param[in] x0 A point on the line. - * @param[in] n The direction of the line. - * @return The new line. - */ -DMNSN_INLINE dmnsn_line -dmnsn_new_line(dmnsn_vector x0, dmnsn_vector n) -{ - dmnsn_line l = { x0, n }; - return l; -} - -/** - * Construct a new bounding box. - * @param[in] min The minimal extent of the bounding box. - * @param[in] max The maximal extent of the bounding box. - * @return The new bounding box. - */ -DMNSN_INLINE dmnsn_bounding_box -dmnsn_new_bounding_box(dmnsn_vector min, dmnsn_vector max) -{ - dmnsn_bounding_box box = { min, max }; - return box; -} - -/** Return the bounding box which contains nothing. */ -DMNSN_INLINE dmnsn_bounding_box -dmnsn_zero_bounding_box(void) -{ - dmnsn_bounding_box box = { - { DMNSN_INFINITY, DMNSN_INFINITY, DMNSN_INFINITY }, - { -DMNSN_INFINITY, -DMNSN_INFINITY, -DMNSN_INFINITY } - }; - return box; -} - -/** Return the bounding box which contains everything. */ -DMNSN_INLINE dmnsn_bounding_box -dmnsn_infinite_bounding_box(void) -{ - dmnsn_bounding_box box = { - { -DMNSN_INFINITY, -DMNSN_INFINITY, -DMNSN_INFINITY }, - { DMNSN_INFINITY, DMNSN_INFINITY, DMNSN_INFINITY } - }; - return box; -} - -/* Vector and matrix arithmetic */ - -/** Negate a vector. */ -DMNSN_INLINE dmnsn_vector -dmnsn_vector_negate(dmnsn_vector rhs) -{ - /* 3 negations */ - dmnsn_vector v = { -rhs.x, -rhs.y, -rhs.z }; - return v; -} - -/** Add two vectors. */ -DMNSN_INLINE dmnsn_vector -dmnsn_vector_add(dmnsn_vector lhs, dmnsn_vector rhs) -{ - /* 3 additions */ - dmnsn_vector v = { lhs.x + rhs.x, lhs.y + rhs.y, lhs.z + rhs.z }; - return v; -} - -/** Subtract two vectors. */ -DMNSN_INLINE dmnsn_vector -dmnsn_vector_sub(dmnsn_vector lhs, dmnsn_vector rhs) -{ - /* 3 additions */ - dmnsn_vector v = { lhs.x - rhs.x, lhs.y - rhs.y, lhs.z - rhs.z }; - return v; -} - -/** Multiply a vector by a scalar. */ -DMNSN_INLINE dmnsn_vector -dmnsn_vector_mul(double lhs, dmnsn_vector rhs) -{ - /* 3 multiplications */ - dmnsn_vector v = { lhs*rhs.x, lhs*rhs.y, lhs*rhs.z }; - return v; -} - -/** Divide a vector by a scalar. */ -DMNSN_INLINE dmnsn_vector -dmnsn_vector_div(dmnsn_vector lhs, double rhs) -{ - /* 3 divisions */ - dmnsn_vector v = { lhs.x/rhs, lhs.y/rhs, lhs.z/rhs }; - return v; -} - -/** Return the dot product of two vectors. */ -DMNSN_INLINE double -dmnsn_vector_dot(dmnsn_vector lhs, dmnsn_vector rhs) -{ - /* 3 multiplications, 2 additions */ - return lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z; -} - -/** Return the cross product of two vectors. */ -DMNSN_INLINE dmnsn_vector -dmnsn_vector_cross(dmnsn_vector lhs, dmnsn_vector rhs) -{ - /* 6 multiplications, 3 additions */ - dmnsn_vector v = { lhs.y*rhs.z - lhs.z*rhs.y, - lhs.z*rhs.x - lhs.x*rhs.z, - lhs.x*rhs.y - lhs.y*rhs.x }; - return v; -} - -/** Return the projection of \p u onto \p d. */ -DMNSN_INLINE dmnsn_vector -dmnsn_vector_proj(dmnsn_vector u, dmnsn_vector d) -{ - /* 1 division, 9 multiplications, 4 additions */ - return dmnsn_vector_mul(dmnsn_vector_dot(u, d)/dmnsn_vector_dot(d, d), d); -} - -/** Return the magnitude of a vector. */ -DMNSN_INLINE double -dmnsn_vector_norm(dmnsn_vector n) -{ - /* 1 sqrt, 3 multiplications, 2 additions */ - return sqrt(dmnsn_vector_dot(n, n)); -} - -/** Return the direction of a vector. */ -DMNSN_INLINE dmnsn_vector -dmnsn_vector_normalized(dmnsn_vector n) -{ - /* 1 sqrt, 3 divisions, 3 multiplications, 2 additions */ - return dmnsn_vector_div(n, dmnsn_vector_norm(n)); -} - -/** Return the component-wise minimum of two vectors. */ -DMNSN_INLINE dmnsn_vector -dmnsn_vector_min(dmnsn_vector a, dmnsn_vector b) -{ - return dmnsn_new_vector( - dmnsn_min(a.x, b.x), - dmnsn_min(a.y, b.y), - dmnsn_min(a.z, b.z) - ); -} - -/** Return the component-wise maximum of two vectors. */ -DMNSN_INLINE dmnsn_vector -dmnsn_vector_max(dmnsn_vector a, dmnsn_vector b) -{ - return dmnsn_new_vector( - dmnsn_max(a.x, b.x), - dmnsn_max(a.y, b.y), - dmnsn_max(a.z, b.z) - ); -} - -/** Invert a matrix. */ -dmnsn_matrix dmnsn_matrix_inverse(dmnsn_matrix A); - -/** Multiply two matricies. */ -dmnsn_matrix dmnsn_matrix_mul(dmnsn_matrix lhs, dmnsn_matrix rhs); - -/** Transform a point by a matrix. */ -DMNSN_INLINE dmnsn_vector -dmnsn_transform_point(dmnsn_matrix T, dmnsn_vector v) -{ - /* 9 multiplications, 9 additions */ - dmnsn_vector r; - r.x = T.n[0][0]*v.x + T.n[0][1]*v.y + T.n[0][2]*v.z + T.n[0][3]; - r.y = T.n[1][0]*v.x + T.n[1][1]*v.y + T.n[1][2]*v.z + T.n[1][3]; - r.z = T.n[2][0]*v.x + T.n[2][1]*v.y + T.n[2][2]*v.z + T.n[2][3]; - return r; -} - -/** Transform a direction by a matrix. */ -DMNSN_INLINE dmnsn_vector -dmnsn_transform_direction(dmnsn_matrix T, dmnsn_vector v) -{ - /* 9 multiplications, 6 additions */ - dmnsn_vector r; - r.x = T.n[0][0]*v.x + T.n[0][1]*v.y + T.n[0][2]*v.z; - r.y = T.n[1][0]*v.x + T.n[1][1]*v.y + T.n[1][2]*v.z; - r.z = T.n[2][0]*v.x + T.n[2][1]*v.y + T.n[2][2]*v.z; - return r; -} - -/** - * Transform a pseudovector by a matrix. - * @param[in] Tinv The inverse of the transformation matrix. - * @param[in] v The pseudovector to transform - * @return The transformed pseudovector. - */ -DMNSN_INLINE dmnsn_vector -dmnsn_transform_normal(dmnsn_matrix Tinv, dmnsn_vector v) -{ - /* Multiply by the transpose of the inverse - (9 multiplications, 6 additions) */ - dmnsn_vector r; - r.x = Tinv.n[0][0]*v.x + Tinv.n[1][0]*v.y + Tinv.n[2][0]*v.z; - r.y = Tinv.n[0][1]*v.x + Tinv.n[1][1]*v.y + Tinv.n[2][1]*v.z; - r.z = Tinv.n[0][2]*v.x + Tinv.n[1][2]*v.y + Tinv.n[2][2]*v.z; - return r; -} - -/** Transform a bounding box by a matrix. */ -dmnsn_bounding_box dmnsn_transform_bounding_box(dmnsn_matrix T, - dmnsn_bounding_box box); - -/** - * Transform a line by a matrix. - * \f$ n' = T(l.\vec{x_0} + l.\vec{n}) - T(l.\vec{x_0}) \f$, - * \f$ \vec{x_0}' = T(l.\vec{x_0}) \f$ - */ -DMNSN_INLINE dmnsn_line -dmnsn_transform_line(dmnsn_matrix T, dmnsn_line l) -{ - /* 18 multiplications, 15 additions */ - dmnsn_line ret; - ret.x0 = dmnsn_transform_point(T, l.x0); - ret.n = dmnsn_transform_direction(T, l.n); - return ret; -} - -/** - * Return the point at \p t on a line. - * The point is defined by \f$ l.\vec{x_0} + t \cdot l.\vec{n} \f$ - */ -DMNSN_INLINE dmnsn_vector -dmnsn_line_point(dmnsn_line l, double t) -{ - return dmnsn_vector_add(l.x0, dmnsn_vector_mul(t, l.n)); -} - -/** Add epsilon*l.n to l.x0, to avoid self-intersections. */ -DMNSN_INLINE dmnsn_line -dmnsn_line_add_epsilon(dmnsn_line l) -{ - return dmnsn_new_line( - dmnsn_vector_add( - l.x0, - dmnsn_vector_mul(1.0e3*dmnsn_epsilon, l.n) - ), - l.n - ); -} - -/** - * Construct a new symmetric bounding box. - * @param[in] r The extent of the bounding box from the origin. - * @return The new bounding box. - */ -DMNSN_INLINE dmnsn_bounding_box -dmnsn_symmetric_bounding_box(dmnsn_vector r) -{ - dmnsn_vector minus_r = dmnsn_vector_negate(r); - dmnsn_bounding_box box = { - dmnsn_vector_min(r, minus_r), - dmnsn_vector_max(r, minus_r) - }; - return box; -} - -/** Return whether \p p is within the axis-aligned bounding box. */ -DMNSN_INLINE bool -dmnsn_bounding_box_contains(dmnsn_bounding_box box, dmnsn_vector p) -{ - return (p.x >= box.min.x && p.y >= box.min.y && p.z >= box.min.z) - && (p.x <= box.max.x && p.y <= box.max.y && p.z <= box.max.z); -} - -/** Return whether a bounding box is infinite. */ -DMNSN_INLINE bool -dmnsn_bounding_box_is_infinite(dmnsn_bounding_box box) -{ - return box.min.x == -DMNSN_INFINITY; -} - -/** - * Expand a bounding box to contain a point - * @param[in] box The bounding box to expand. - * @param[in] point The point to swallow. - * @return The expanded bounding box. - */ -DMNSN_INLINE dmnsn_bounding_box -dmnsn_bounding_box_swallow(dmnsn_bounding_box box, dmnsn_vector point) -{ - dmnsn_bounding_box ret = { - dmnsn_vector_min(box.min, point), - dmnsn_vector_max(box.max, point) - }; - return ret; -} - -/** Return whether a vector contains any NaN components. */ -DMNSN_INLINE bool -dmnsn_vector_isnan(dmnsn_vector v) -{ - return dmnsn_isnan(v.x) || dmnsn_isnan(v.y) || dmnsn_isnan(v.z); -} - -/** Return whether a matrix contains any NaN components. */ -DMNSN_INLINE bool -dmnsn_matrix_isnan(dmnsn_matrix m) -{ - size_t i, j; - for (i = 0; i < 3; ++i) { - for (j = 0; j < 4; ++j) { - if (dmnsn_isnan(m.n[i][j])) { - return true; - } - } - } - return false; -} - -/** Return whether a line contains any NaN entries. */ -DMNSN_INLINE bool -dmnsn_line_isnan(dmnsn_line l) -{ - return dmnsn_vector_isnan(l.x0) || dmnsn_vector_isnan(l.n); -} - -/** Return whether a bounding box has any NaN components. */ -DMNSN_INLINE bool -dmnsn_bounding_box_isnan(dmnsn_bounding_box box) -{ - return dmnsn_vector_isnan(box.min) || dmnsn_vector_isnan(box.max); -} |