1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
//! [k-d trees](https://en.wikipedia.org/wiki/K-d_tree).
use super::{Metric, NearestNeighbors, Neighborhood};
use ordered_float::OrderedFloat;
use std::iter::FromIterator;
/// A point in Cartesian space.
pub trait Cartesian: Metric<[f64]> {
/// Returns the number of dimensions necessary to describe this point.
fn dimensions(&self) -> usize;
/// Returns the value of the `i`th coordinate of this point (`i < self.dimensions()`).
fn coordinate(&self, i: usize) -> f64;
}
/// Blanket [Cartesian] implementation for references.
impl<'a, T: Cartesian> Cartesian for &'a T {
fn dimensions(&self) -> usize {
(*self).dimensions()
}
fn coordinate(&self, i: usize) -> f64 {
(*self).coordinate(i)
}
}
/// Blanket [Metric<[f64]>](Metric) implementation for [Cartesian] references.
impl<'a, T: Cartesian> Metric<[f64]> for &'a T {
type Distance = T::Distance;
fn distance(&self, other: &[f64]) -> Self::Distance {
(*self).distance(other)
}
}
/// Standard cartesian space.
impl Cartesian for [f64] {
fn dimensions(&self) -> usize {
self.len()
}
fn coordinate(&self, i: usize) -> f64 {
self[i]
}
}
/// Marker trait for cartesian metric spaces.
pub trait CartesianMetric<T: ?Sized = Self>:
Cartesian + Metric<T, Distance = <Self as Metric<[f64]>>::Distance>
{
}
/// Blanket [CartesianMetric] implementation for cartesian spaces with compatible metric distance
/// types.
impl<T, U> CartesianMetric<T> for U
where
T: ?Sized,
U: ?Sized + Cartesian + Metric<T, Distance = <U as Metric<[f64]>>::Distance>,
{
}
/// A node in a k-d tree.
#[derive(Debug)]
struct KdNode<T> {
/// The value stored in this node.
item: T,
/// The size of the left subtree.
left_len: usize,
}
impl<T: Cartesian> KdNode<T> {
/// Create a new KdNode.
fn new(item: T) -> Self {
Self { item, left_len: 0 }
}
/// Build a k-d tree recursively.
fn build(slice: &mut [KdNode<T>], i: usize) {
if slice.is_empty() {
return;
}
slice.sort_unstable_by_key(|n| OrderedFloat::from(n.item.coordinate(i)));
let mid = slice.len() / 2;
slice.swap(0, mid);
let (node, children) = slice.split_first_mut().unwrap();
let (left, right) = children.split_at_mut(mid);
node.left_len = left.len();
let j = (i + 1) % node.item.dimensions();
Self::build(left, j);
Self::build(right, j);
}
/// Recursively search for nearest neighbors.
fn recurse<'a, U, N>(
slice: &'a [KdNode<T>],
i: usize,
closest: &mut [f64],
neighborhood: &mut N,
) where
T: 'a,
U: CartesianMetric<&'a T>,
N: Neighborhood<&'a T, U>,
{
let (node, children) = slice.split_first().unwrap();
neighborhood.consider(&node.item);
let target = neighborhood.target();
let ti = target.coordinate(i);
let ni = node.item.coordinate(i);
let j = (i + 1) % node.item.dimensions();
let (left, right) = children.split_at(node.left_len);
let (near, far) = if ti <= ni {
(left, right)
} else {
(right, left)
};
if !near.is_empty() {
Self::recurse(near, j, closest, neighborhood);
}
if !far.is_empty() {
let saved = closest[i];
closest[i] = ni;
if neighborhood.contains_distance(target.distance(closest)) {
Self::recurse(far, j, closest, neighborhood);
}
closest[i] = saved;
}
}
}
/// A [k-d tree](https://en.wikipedia.org/wiki/K-d_tree).
#[derive(Debug)]
pub struct KdTree<T>(Vec<KdNode<T>>);
impl<T: Cartesian> FromIterator<T> for KdTree<T> {
/// Create a new k-d tree from a set of points.
fn from_iter<I: IntoIterator<Item = T>>(items: I) -> Self {
let mut nodes: Vec<_> = items.into_iter().map(KdNode::new).collect();
KdNode::build(nodes.as_mut_slice(), 0);
Self(nodes)
}
}
impl<T, U> NearestNeighbors<T, U> for KdTree<T>
where
T: Cartesian,
U: CartesianMetric<T>,
{
fn search<'a, 'b, N>(&'a self, mut neighborhood: N) -> N
where
T: 'a,
U: 'b,
N: Neighborhood<&'a T, &'b U>,
{
if !self.0.is_empty() {
let target = neighborhood.target();
let dims = target.dimensions();
let mut closest: Vec<_> = (0..dims).map(|i| target.coordinate(i)).collect();
KdNode::recurse(&self.0, 0, &mut closest, &mut neighborhood);
}
neighborhood
}
}
/// An iterator that the moves values out of a k-d tree.
#[derive(Debug)]
pub struct IntoIter<T>(std::vec::IntoIter<KdNode<T>>);
impl<T> Iterator for IntoIter<T> {
type Item = T;
fn next(&mut self) -> Option<T> {
self.0.next().map(|n| n.item)
}
}
impl<T> IntoIterator for KdTree<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> Self::IntoIter {
IntoIter(self.0.into_iter())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::metric::tests::{test_nearest_neighbors, Point};
use crate::metric::SquaredDistance;
impl Metric<[f64]> for Point {
type Distance = SquaredDistance;
fn distance(&self, other: &[f64]) -> Self::Distance {
self.0.distance(other)
}
}
impl Cartesian for Point {
fn dimensions(&self) -> usize {
self.0.dimensions()
}
fn coordinate(&self, i: usize) -> f64 {
self.0.coordinate(i)
}
}
#[test]
fn test_kd_tree() {
test_nearest_neighbors(KdTree::from_iter);
}
}
|