1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
|
//! [Dynamization](https://en.wikipedia.org/wiki/Dynamization) for nearest neighbor search.
use super::kd::KdTree;
use super::vp::VpTree;
use super::{Metric, NearestNeighbors, Neighborhood};
use std::iter::{self, Extend, Flatten, FromIterator};
/// A dynamic wrapper for a static nearest neighbor search data structure.
///
/// This type applies [dynamization](https://en.wikipedia.org/wiki/Dynamization) to an arbitrary
/// nearest neighbor search structure `T`, allowing new items to be added dynamically.
#[derive(Debug)]
pub struct Forest<T>(Vec<Option<T>>);
impl<T, U> Forest<U>
where
U: FromIterator<T> + IntoIterator<Item = T>,
{
/// Create a new empty forest.
pub fn new() -> Self {
Self(Vec::new())
}
/// Add a new item to the forest.
pub fn push(&mut self, item: T) {
self.extend(iter::once(item));
}
/// Get the number of items in the forest.
pub fn len(&self) -> usize {
let mut len = 0;
for (i, slot) in self.0.iter().enumerate() {
if slot.is_some() {
len |= 1 << i;
}
}
len
}
}
impl<T, U> Extend<T> for Forest<U>
where
U: FromIterator<T> + IntoIterator<Item = T>,
{
fn extend<I: IntoIterator<Item = T>>(&mut self, items: I) {
let mut vec: Vec<_> = items.into_iter().collect();
let new_len = self.len() + vec.len();
for i in 0.. {
let bit = 1 << i;
if bit > new_len {
break;
}
if i >= self.0.len() {
self.0.push(None);
}
if new_len & bit == 0 {
if let Some(tree) = self.0[i].take() {
vec.extend(tree);
}
} else if self.0[i].is_none() {
let offset = vec.len() - bit;
self.0[i] = Some(vec.drain(offset..).collect());
}
}
debug_assert!(vec.is_empty());
debug_assert!(self.len() == new_len);
}
}
impl<T, U> FromIterator<T> for Forest<U>
where
U: FromIterator<T> + IntoIterator<Item = T>,
{
fn from_iter<I: IntoIterator<Item = T>>(items: I) -> Self {
let mut forest = Self::new();
forest.extend(items);
forest
}
}
type IntoIterImpl<T> = Flatten<Flatten<std::vec::IntoIter<Option<T>>>>;
/// An iterator that moves items out of a forest.
pub struct IntoIter<T: IntoIterator>(IntoIterImpl<T>);
impl<T: IntoIterator> Iterator for IntoIter<T> {
type Item = T::Item;
fn next(&mut self) -> Option<Self::Item> {
self.0.next()
}
}
impl<T: IntoIterator> IntoIterator for Forest<T> {
type Item = T::Item;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> Self::IntoIter {
IntoIter(self.0.into_iter().flatten().flatten())
}
}
impl<T, U, V> NearestNeighbors<T, U> for Forest<V>
where
U: Metric<T>,
V: NearestNeighbors<T, U>,
{
fn search<'a, 'b, N>(&'a self, neighborhood: N) -> N
where
T: 'a,
U: 'b,
N: Neighborhood<&'a T, &'b U>,
{
self.0
.iter()
.flatten()
.fold(neighborhood, |n, t| t.search(n))
}
}
/// A forest of k-d trees.
pub type KdForest<T> = Forest<KdTree<T>>;
/// A forest of vantage-point trees.
pub type VpForest<T> = Forest<VpTree<T>>;
#[cfg(test)]
mod tests {
use super::*;
use crate::metric::tests::test_nearest_neighbors;
use crate::metric::ExhaustiveSearch;
#[test]
fn test_exhaustive_forest() {
test_nearest_neighbors(Forest::<ExhaustiveSearch<_>>::from_iter);
}
#[test]
fn test_forest_forest() {
test_nearest_neighbors(Forest::<Forest<ExhaustiveSearch<_>>>::from_iter);
}
#[test]
fn test_kd_forest() {
test_nearest_neighbors(KdForest::from_iter);
}
#[test]
fn test_vp_forest() {
test_nearest_neighbors(VpForest::from_iter);
}
}
|