1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
/*************************************************************************
* Copyright (C) 2009 Tavian Barnes <tavianator@gmail.com> *
* *
* This file is part of The Dimension Library. *
* *
* The Dimension Library is free software; you can redistribute it and/ *
* or modify it under the terms of the GNU Lesser General Public License *
* as published by the Free Software Foundation; either version 3 of the *
* License, or (at your option) any later version. *
* *
* The Dimension Library is distributed in the hope that it will be *
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty *
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with this program. If not, see *
* <http://www.gnu.org/licenses/>. *
*************************************************************************/
// Wrappers for geometric types (Vectors, Matricies, Lines (rays)).
#ifndef DIMENSIONXX_GEOMETRY_HPP
#define DIMENSIONXX_GEOMETRY_HPP
#include <dimension.h>
namespace Dimension
{
class Vector;
// Wrapper for dmnsn_matrix
class Matrix
{
public:
Matrix() { }
Matrix(double a0, double a1, double a2, double a3,
double b0, double b1, double b2, double b3,
double c0, double c1, double c2, double c3,
double d0, double d1, double d2, double d3)
: m_matrix(dmnsn_matrix_construct(a0, a1, a2, a3,
b0, b1, b2, b3,
c0, c1, c2, c3,
d0, d1, d2, d3)) { }
explicit Matrix(dmnsn_matrix m) : m_matrix(m) { }
// Matrix(const Matrix& m);
// ~Matrix();
// Element access
double* operator[](unsigned int i) { return m_matrix.n[i]; }
// Matrix arithmetic
// Matrix& operator=(const Matrix& rhs);
Matrix& operator*=(const Matrix& rhs)
{ m_matrix = dmnsn_matrix_mul(rhs.m_matrix, m_matrix); return *this; }
// Get the wrapped matrix
dmnsn_matrix dmnsn() const { return m_matrix; }
// Special constructors
static inline Matrix identity();
static inline Matrix scale(const Vector& factor);
static inline Matrix translation(const Vector& d);
static inline Matrix rotation(const Vector& theta);
private:
dmnsn_matrix m_matrix;
};
// Wrapper for dmnsn_vector
class Vector
{
public:
Vector() { }
Vector(double x, double y, double z)
: m_vector(dmnsn_vector_construct(x, y, z)) { }
explicit Vector(dmnsn_vector v) : m_vector(v) { }
// Vector(const Vector& v);
// ~Vector();
// Get the x, y, and z components.
double x() const { return m_vector.x; }
double y() const { return m_vector.y; }
double z() const { return m_vector.z; }
// Vector arithmetic
// Vector& operator=(const Vector& rhs);
Vector& operator+=(const Vector& rhs)
{ m_vector = dmnsn_vector_add(m_vector, rhs.m_vector); return *this; }
Vector& operator-=(const Vector& rhs)
{ m_vector = dmnsn_vector_sub(m_vector, rhs.m_vector); return *this; }
Vector& operator*=(double rhs)
{ m_vector = dmnsn_vector_mul(rhs, m_vector); return *this; }
Vector& operator*=(const Matrix& m)
{ m_vector = dmnsn_matrix_vector_mul(m.dmnsn(), m_vector); return *this; }
Vector& operator/=(double rhs)
{ m_vector = dmnsn_vector_div(m_vector, rhs); return *this; }
// Get the wrapped vector
dmnsn_vector dmnsn() const { return m_vector; }
private:
dmnsn_vector m_vector;
};
// Wrapper for dmnsn_line
class Line
{
public:
Line() { }
Line(const Vector& x0, const Vector& n)
{ m_line.x0 = x0.dmnsn(); m_line.n = n.dmnsn(); }
explicit Line(dmnsn_line l) : m_line(l) { }
// Line(const Line& l);
// ~Line();
Vector x0() const { return Vector(m_line.x0); }
Vector n() const { return Vector(m_line.n); }
double t(const Vector& v) { return dmnsn_line_index(m_line, v.dmnsn()); }
// Line& operator=(const Line& l);
Line& operator*=(const Matrix& m)
{ m_line = dmnsn_matrix_line_mul(m.dmnsn(), m_line); return *this; }
// Get the point `t' on the line (x0 + t*n)
Vector operator()(double t) { return Vector(dmnsn_line_point(m_line, t)); }
// Get the wrapped line
dmnsn_line dmnsn() const { return m_line; }
private:
dmnsn_line m_line;
};
// Array_Element specializations
template <>
class Array_Element<Matrix>
: public By_Value_Array_Element<Matrix, dmnsn_matrix>
{
public:
typedef dmnsn_matrix C_Type;
Array_Element() { }
Array_Element(Matrix& matrix)
: By_Value_Array_Element<Matrix, dmnsn_matrix>(matrix) { }
Array_Element(C_Type c)
: By_Value_Array_Element<Matrix, dmnsn_matrix>(c) { }
// Array_Element(const Array_Element& ae);
// ~Array_Element();
// Array_Element& operator=(const Array_Element& ae);
};
template <>
class Array_Element<Vector>
: public By_Value_Array_Element<Vector, dmnsn_vector>
{
public:
typedef dmnsn_vector C_Type;
Array_Element() { }
Array_Element(Vector& vector)
: By_Value_Array_Element<Vector, dmnsn_vector>(vector) { }
Array_Element(C_Type c)
: By_Value_Array_Element<Vector, dmnsn_vector>(c) { }
// Array_Element(const Array_Element& ae);
// ~Array_Element();
// Array_Element& operator=(const Array_Element& ae);
};
template <>
class Array_Element<Line>
: public By_Value_Array_Element<Line, dmnsn_line>
{
public:
typedef dmnsn_line C_Type;
Array_Element() { }
Array_Element(Line& line)
: By_Value_Array_Element<Line, dmnsn_line>(line) { }
Array_Element(C_Type c)
: By_Value_Array_Element<Line, dmnsn_line>(c) { }
// Array_Element(const Array_Element& ae);
// ~Array_Element();
// Array_Element& operator=(const Array_Element& ae);
};
// Matrix operators
inline Matrix
operator*(const Matrix& lhs, const Matrix& rhs)
{
// This order is important!
Matrix r = rhs;
r *= lhs;
return r;
}
inline Matrix
inverse(const Matrix& M)
{
return Matrix(dmnsn_matrix_inverse(M.dmnsn()));
}
// Special Matrix constructors
inline Matrix
Matrix::identity()
{
return Matrix(dmnsn_identity_matrix());
}
inline Matrix
Matrix::scale(const Vector& factor)
{
return Matrix(dmnsn_scale_matrix(factor.dmnsn()));
}
inline Matrix
Matrix::translation(const Vector& d)
{
return Matrix(dmnsn_translation_matrix(d.dmnsn()));
}
inline Matrix
Matrix::rotation(const Vector& theta)
{
return Matrix(dmnsn_rotation_matrix(theta.dmnsn()));
}
// Vector operators
inline Vector
operator+(const Vector& lhs, const Vector& rhs)
{
Vector r = lhs;
r += rhs;
return r;
}
inline Vector
operator-(const Vector& lhs, const Vector& rhs)
{
Vector r = lhs;
r -= rhs;
return r;
}
inline Vector
operator*(const Vector& lhs, double rhs)
{
Vector r = lhs;
r *= rhs;
return r;
}
inline Vector
operator*(double lhs, const Vector& rhs)
{
Vector r = rhs;
r *= lhs;
return r;
}
inline Vector
operator*(const Matrix& lhs, const Vector& rhs)
{
Vector r = rhs;
r *= lhs;
return r;
}
inline Vector
operator/(const Vector& lhs, double rhs)
{
Vector r = lhs;
r /= rhs;
return r;
}
// Dot product
inline double
dot(const Vector& lhs, const Vector& rhs)
{
return dmnsn_vector_dot(lhs.dmnsn(), rhs.dmnsn());
}
// Cross product
inline Vector
cross(const Vector& lhs, const Vector& rhs)
{
return Vector(dmnsn_vector_cross(lhs.dmnsn(), rhs.dmnsn()));
}
// Line transformation
inline Line
operator*(const Matrix& lhs, const Line& rhs)
{
Line r = rhs;
r *= lhs;
return r;
}
}
#endif /* DIMENSIONXX_GEOMETRY_HPP */
|