1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
/*************************************************************************
* Copyright (C) 2009-2010 Tavian Barnes <tavianator@gmail.com> *
* *
* This file is part of The Dimension Library. *
* *
* The Dimension Library is free software; you can redistribute it and/ *
* or modify it under the terms of the GNU Lesser General Public License *
* as published by the Free Software Foundation; either version 3 of the *
* License, or (at your option) any later version. *
* *
* The Dimension Library is distributed in the hope that it will be *
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty *
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with this program. If not, see *
* <http://www.gnu.org/licenses/>. *
*************************************************************************/
#include "dimension.h"
#include <math.h>
/* Get the real degree of a polynomial, ignoring leading zeros */
static inline size_t
dmnsn_real_degree(const double poly[], size_t degree)
{
for (ssize_t i = degree; i >= 0; --i) {
if (fabs(poly[i]) >= dmnsn_epsilon) {
return i;
}
}
return 0;
}
/* Divide each coefficient by the leading coefficient */
static inline void
dmnsn_normalize_polynomial(double poly[], size_t degree)
{
for (size_t i = 0; i < degree; ++i) {
poly[i] /= poly[degree];
}
poly[degree] = 1.0;
}
/* Eliminate trivial zero roots from poly[] */
static inline void
dmnsn_eliminate_zero_roots(double poly[], size_t *degree)
{
size_t i, deg = *degree;
for (i = 0; i <= deg && fabs(poly[i]) < dmnsn_epsilon; ++i);
if (i > 0) {
for (size_t j = 0; j + i <= deg; ++j) {
poly[j] = poly[j + i];
}
}
*degree -= i;
}
/* Returns the number of sign changes between coefficients of `poly' */
static inline size_t
dmnsn_descartes_rule(const double poly[], size_t degree)
{
int lastsign = 0;
size_t i;
for (i = 0; i <= degree; ++i) {
if (fabs(poly[i]) >= dmnsn_epsilon) {
lastsign = dmnsn_signbit(poly[i]);
break;
}
}
size_t changes = 0;
for (++i; i <= degree; ++i) {
int sign = dmnsn_signbit(poly[i]);
if (fabs(poly[i]) >= dmnsn_epsilon && sign != lastsign) {
lastsign = sign;
++changes;
}
}
return changes;
}
#define DMNSN_NBINOM 11
static const double dmnsn_pascals_triangle[DMNSN_NBINOM][DMNSN_NBINOM] = {
{ 1.0 },
{ 1.0, 1.0 },
{ 1.0, 2.0, 1.0 },
{ 1.0, 3.0, 3.0, 1.0 },
{ 1.0, 4.0, 6.0, 4.0, 1.0 },
{ 1.0, 5.0, 10.0, 10.0, 5.0, 1.0 },
{ 1.0, 6.0, 15.0, 20.0, 15.0, 6.0, 1.0 },
{ 1.0, 7.0, 21.0, 35.0, 35.0, 21.0, 7.0, 1.0 },
{ 1.0, 8.0, 28.0, 56.0, 70.0, 56.0, 28.0, 8.0, 1.0 },
{ 1.0, 9.0, 36.0, 84.0, 126.0, 126.0, 84.0, 36.0, 9.0, 1.0 },
{ 1.0, 10.0, 45.0, 120.0, 210.0, 252.0, 210.0, 120.0, 45.0, 10.0, 1.0 }
};
/* Get the (n k) binomial coefficient */
static inline double
dmnsn_binom(size_t n, size_t k)
{
if (k > n - k) {
k = n - k;
}
double ret = 1.0;
for (size_t i = 0; i < k; ++i) {
ret *= n - i;
ret /= i + 1;
}
return ret;
}
/* Find all ranges that contain a single root, with Uspensky's algorithm */
static size_t
dmnsn_uspensky_bounds(const double poly[], size_t degree, double bounds[][2],
size_t max_roots)
{
size_t signchanges = dmnsn_descartes_rule(poly, degree);
if (signchanges == 0) {
return 0;
} else if (signchanges == 1) {
bounds[0][0] = +0.0;
bounds[0][1] = INFINITY;
return 1;
} else {
/* Number of roots found so far */
size_t n = 0;
/* First divide poly[] by (x - 1) to test for a root at x = 1 */
double pdiv1[degree], rem = poly[degree];
for (ssize_t i = degree - 1; i >= 0; --i) {
pdiv1[i] = rem;
rem += poly[i];
}
if (fabs(rem) < dmnsn_epsilon) {
bounds[n][0] = 1.0;
bounds[n][1] = 1.0;
++n;
if (n == max_roots)
return n;
--degree;
poly = pdiv1;
}
/* a[] is the expanded form of poly(x + 1), b[] is the expanded form of
(x + 1)^degree * poly(1/(x + 1)) */
double a[degree + 1], b[degree + 1];
if (degree < DMNSN_NBINOM) {
/* Use precomputed binomial coefficients if possible */
for (size_t i = 0; i <= degree; ++i) {
a[i] = poly[i];
b[i] = poly[degree - i];
for (size_t j = i + 1; j <= degree; ++j) {
double binom = dmnsn_pascals_triangle[j][i];
a[i] += binom*poly[j];
b[i] += binom*poly[degree - j];
}
}
} else {
for (size_t i = 0; i <= degree; ++i) {
a[i] = poly[i];
b[i] = poly[degree - i];
for (size_t j = i + 1; j <= degree; ++j) {
double binom = dmnsn_binom(j, i);
a[i] += binom*poly[j];
b[i] += binom*poly[degree - j];
}
}
}
/* Recursively test for roots in b[] */
size_t nb = dmnsn_uspensky_bounds(b, degree, bounds + n, max_roots - n);
for (size_t i = n; i < n + nb; ++i) {
/* Transform the found roots of b[] into roots of poly[] */
double temp = bounds[i][0];
bounds[i][0] = 1.0/(bounds[i][1] + 1.0);
bounds[i][1] = 1.0/(temp + 1.0);
}
n += nb;
if (n == max_roots)
return n;
/* Recursively test for roots in a[] */
size_t na = dmnsn_uspensky_bounds(a, degree, bounds + n, max_roots - n);
for (size_t i = n; i < n + na; ++i) {
/* Transform the found roots of a[] into roots of poly[] */
bounds[i][0] += 1.0;
bounds[i][1] += 1.0;
}
n += na;
return n;
}
}
/* Calculate a finite upper bound for the roots of poly[] */
static inline double
dmnsn_root_bound(double poly[], size_t degree)
{
double bound = 0.0;
for (size_t i = 0; i < degree; ++i) {
bound = dmnsn_max(bound, fabs(poly[i]));
}
bound /= fabs(poly[degree]);
bound += 1.0;
return bound;
}
/* Use the false position method to find a root in a range that contains exactly
one root */
static inline double
dmnsn_bisect_root(const double poly[], size_t degree, double min, double max)
{
double evmin = dmnsn_evaluate_polynomial(poly, degree, min);
double evmax = dmnsn_evaluate_polynomial(poly, degree, max);
double mid = 0.0, evmid;
int lastsign = -1;
if (max - min < dmnsn_epsilon)
return min;
do {
mid = (min*evmax - max*evmin)/(evmax - evmin);
evmid = dmnsn_evaluate_polynomial(poly, degree, mid);
int sign = dmnsn_signbit(evmid);
if (mid < min) {
/* This can happen due to numerical instability in the root bounding
algorithm, so behave like the normal secant method */
max = min;
evmax = evmin;
min = mid;
evmin = evmid;
} else if (mid > max) {
min = max;
evmin = evmax;
max = mid;
evmax = evmid;
} else if (sign == dmnsn_signbit(evmax)) {
max = mid;
evmax = evmid;
if (sign == lastsign) {
/* Don't allow the algorithm to keep the same endpoint for three
iterations in a row; this ensures superlinear convergence */
evmin /= 2.0;
}
} else {
min = mid;
evmin = evmid;
if (sign == lastsign) {
evmax /= 2.0;
}
}
lastsign = sign;
} while (fabs(evmid) >= fabs(mid)*dmnsn_epsilon);
return mid;
}
/* Use synthetic division to eliminate the root `r' from poly[] */
static inline void
dmnsn_eliminate_root(double poly[], size_t *degree, double r)
{
size_t deg = *degree;
double rem = poly[deg];
for (ssize_t i = deg - 1; i >= 0; --i) {
double temp = poly[i];
poly[i] = rem;
rem = temp + r*rem;
}
--*degree;
}
/* Basic solving methods -- assuming normalized polynomial */
static inline size_t
dmnsn_solve_linear(const double poly[2], double x[1])
{
x[0] = -poly[0];
return (x[0] >= dmnsn_epsilon) ? 1 : 0;
}
static inline size_t
dmnsn_solve_quadratic(const double poly[3], double x[2])
{
double disc = poly[1]*poly[1] - 4.0*poly[0];
if (disc >= 0.0) {
double s = sqrt(disc);
x[0] = (-poly[1] + s)/2.0;
x[1] = (-poly[1] - s)/2.0;
return (x[0] >= dmnsn_epsilon) ? ((x[1] >= dmnsn_epsilon) ? 2 : 1) : 0;
} else {
return 0;
}
}
/* Uspensky's algorithm */
size_t
dmnsn_solve_polynomial(const double poly[], size_t degree, double x[])
{
/* Copy the polynomial so we can be destructive */
double p[degree + 1];
for (size_t i = 0; i <= degree; ++i) {
p[i] = poly[i];
}
/* Index into x[] */
size_t i = 0;
/* Account for leading zero coefficients */
degree = dmnsn_real_degree(p, degree);
/* Normalize the leading coefficient to 1.0 */
dmnsn_normalize_polynomial(p, degree);
/* Eliminate simple zero roots */
dmnsn_eliminate_zero_roots(p, °ree);
if (degree >= 3) {
/* Find isolating intervals for (degree - 2) roots of p[] */
double ranges[degree - 2][2];
size_t n = dmnsn_uspensky_bounds(p, degree, ranges, degree - 2);
/* Calculate a finite upper bound for the roots of p[] */
double absmax = dmnsn_root_bound(p, degree);
for (size_t j = 0; j < n; ++j) {
/* Replace large or infinite upper bounds with a finite one */
ranges[j][1] = dmnsn_min(ranges[j][1], absmax);
/* Bisect within the found range */
double r = dmnsn_bisect_root(p, degree, ranges[j][0], ranges[j][1]);
/* Use synthetic division to eliminate the root `r' */
dmnsn_eliminate_root(p, °ree, r);
/* Store the found root */
x[i] = r;
++i;
}
}
switch (degree) {
case 1:
i += dmnsn_solve_linear(p, x + i);
break;
case 2:
i += dmnsn_solve_quadratic(p, x + i);
break;
}
return i;
}
void
dmnsn_print_polynomial(FILE *file, const double poly[], size_t degree)
{
for (ssize_t i = degree; i >= 0; --i) {
if (i < degree) {
fprintf(file, (poly[i] >= 0.0) ? " + " : " - ");
}
fprintf(file, "%.15g", fabs(poly[i]));
if (i >= 2) {
fprintf(file, "*x^%zu", i);
} else if (i == 1) {
fprintf(file, "*x");
}
}
}
|