/************************************************************************* * Copyright (C) 2010-2014 Tavian Barnes * * * * This file is part of The Dimension Test Suite. * * * * The Dimension Test Suite is free software; you can redistribute it * * and/or modify it under the terms of the GNU General Public License as * * published by the Free Software Foundation; either version 3 of the * * License, or (at your option) any later version. * * * * The Dimension Test Suite is distributed in the hope that it will be * * useful, but WITHOUT ANY WARRANTY; without even the implied warranty * * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * *************************************************************************/ /** * @file * Basic tests of the polynomial root-finder. */ #include "../../math/polynomial.c" #include "tests.h" #include #define DMNSN_CLOSE_ENOUGH 1.0e-6 static void dmnsn_assert_roots(const double poly[], size_t degree, size_t nroots_ex, ...) { double roots[degree]; size_t nroots = dmnsn_polynomial_solve(poly, degree, roots); ck_assert_int_eq(nroots, nroots_ex); va_list ap; va_start(ap, nroots_ex); for (size_t i = 0; i < nroots; ++i) { double root_ex = va_arg(ap, double); bool found = false; for (size_t j = 0; j < nroots; ++j) { double root = roots[j]; if (fabs(root_ex - root) >= dmnsn_epsilon) { continue; } double evroot = dmnsn_polynomial_evaluate(poly, degree, root); ck_assert(fabs(evroot) < DMNSN_CLOSE_ENOUGH); double evmin = dmnsn_polynomial_evaluate(poly, degree, root - dmnsn_epsilon); double evmax = dmnsn_polynomial_evaluate(poly, degree, root + dmnsn_epsilon); ck_assert(fabs(evroot) <= fabs(evmin) && fabs(evroot) <= fabs(evmax)); found = true; break; } if (!found) { for (size_t j = 0; j < nroots; ++j) { fprintf(stderr, "roots[%zu] == %.17g\n", j, roots[j]); } fprintf(stderr, "----\n"); ck_abort_msg("Expected root %.17g not found", root_ex); } } va_end(ap); } DMNSN_TEST(linear, no_positive_roots) { // poly[] = x + 1 static const double poly[] = { [1] = 1.0, [0] = 1.0, }; dmnsn_assert_roots(poly, 1, 0); } DMNSN_TEST(linear, one_root) { // poly[] = x - 1 static const double poly[] = { [1] = 1.0, [0] = -1.0, }; dmnsn_assert_roots(poly, 1, 1, 1.0); } DMNSN_TEST(quadratic, no_roots) { // poly[] = x^2 + 1 static const double poly[] = { [2] = 1.0, [1] = 0.0, [0] = 1.0, }; dmnsn_assert_roots(poly, 2, 0); } DMNSN_TEST(quadratic, no_positive_roots) { // poly[] = (x + 1)^2 static const double poly[] = { [2] = 1.0, [1] = 2.0, [0] = 1.0, }; dmnsn_assert_roots(poly, 2, 0); } DMNSN_TEST(quadratic, one_positive_root) { // poly[] = (x + 1)*(x - 1) static const double poly[] = { [2] = 1.0, [1] = 0.0, [0] = -1.0, }; dmnsn_assert_roots(poly, 2, 1, 1.0); } DMNSN_TEST(quadratic, two_roots) { // poly[] = (x - 1.2345)*(x - 2.3456) static const double poly[] = { [2] = 1.0, [1] = -3.5801, [0] = 2.8956432, }; dmnsn_assert_roots(poly, 2, 2, 1.2345, 2.3456); } DMNSN_TEST(cubic, no_positive_roots) { // poly[] = x^3 + 1 static const double poly[] = { [3] = 1.0, [2] = 0.0, [1] = 0.0, [0] = 1.0, }; dmnsn_assert_roots(poly, 3, 0); } DMNSN_TEST(cubic, one_root) { // poly[] = x^3 - 1 static const double poly[] = { [3] = 1.0, [2] = 0.0, [1] = 0.0, [0] = -1.0, }; dmnsn_assert_roots(poly, 3, 1, 1.0); } DMNSN_TEST(cubic, two_roots) { // poly[] = (x - 1)*(x - 4)^2 static const double poly[] = { [3] = 1.0, [2] = -9.0, [1] = 24.0, [0] = -16.0, }; dmnsn_assert_roots(poly, 3, 2, 1.0, 4.0); } DMNSN_TEST(cubic, three_roots) { // poly[] = (x - 1.2345)*(x - 2.3456)*(x - 100) static const double poly[] = { [3] = 1.0, [2] = -103.5801, [1] = 360.9056432, [0] = -289.56432, }; dmnsn_assert_roots(poly, 3, 3, 1.2345, 2.3456, 100.0); } DMNSN_TEST(quintic, four_roots) { // poly[] = 2*(x + 1)*(x - 1.2345)*(x - 2.3456)*(x - 5)*(x - 100) static const double poly[] = { [5] = 2.0, [4] = -215.1602, [3] = 1540.4520864, [2] = -2430.5727856, [1] = -1292.541872, [0] = 2895.6432, }; dmnsn_assert_roots(poly, 5, 4, 1.2345, 2.3456, 5.0, 100.0); } // repeated_root[] = (x - 1)^6 static const double repeated_root[7] = { [6] = 1.0, [5] = -6.0, [4] = 15.0, [3] = -20.0, [2] = 15.0, [1] = -6.0, [0] = 1.0, }; DMNSN_TEST(stability, equal_bounds) { double root = dmnsn_bisect_root(repeated_root, 6, 1.0, 1.0); ck_assert_msg(root == 1.0, "root == %.17g", root); } DMNSN_TEST(stability, equal_values_at_bounds) { double root = dmnsn_bisect_root(repeated_root, 6, 0.9, 1.1); ck_assert_msg(fabs(root - 1.0) < dmnsn_epsilon, "root == %.17g", root); }