/************************************************************************* * Copyright (C) 2009-2014 Tavian Barnes * * * * This file is part of The Dimension Library. * * * * The Dimension Library is free software; you can redistribute it and/ * * or modify it under the terms of the GNU Lesser General Public License * * as published by the Free Software Foundation; either version 3 of the * * License, or (at your option) any later version. * * * * The Dimension Library is distributed in the hope that it will be * * useful, but WITHOUT ANY WARRANTY; without even the implied warranty * * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * Lesser General Public License for more details. * * * * You should have received a copy of the GNU Lesser General Public * * License along with this program. If not, see * * . * *************************************************************************/ /** * @file * Spheres. */ #include "dimension-internal.h" /// Sphere intersection callback. static bool dmnsn_sphere_intersection_fn(const dmnsn_object *sphere, dmnsn_line l, dmnsn_intersection *intersection) { // Solve (x0 + nx*t)^2 + (y0 + ny*t)^2 + (z0 + nz*t)^2 == 1 double poly[3], x[2]; poly[2] = dmnsn_vector_dot(l.n, l.n); poly[1] = 2.0*dmnsn_vector_dot(l.n, l.x0); poly[0] = dmnsn_vector_dot(l.x0, l.x0) - 1.0; size_t n = dmnsn_polynomial_solve(poly, 2, x); if (n == 0) { return false; } double t = x[0]; // Optimize for the case where we're outside the sphere if (dmnsn_likely(n == 2)) { t = dmnsn_min(t, x[1]); } intersection->t = t; intersection->normal = dmnsn_line_point(l, t); return true; } /// Sphere inside callback. static bool dmnsn_sphere_inside_fn(const dmnsn_object *sphere, dmnsn_vector point) { return point.x*point.x + point.y*point.y + point.z*point.z < 1.0; } /// Sphere bounding callback. static dmnsn_bounding_box dmnsn_sphere_bounding_fn(const dmnsn_object *object, dmnsn_matrix trans) { // Get a tight bound using the conic representation of a sphere: // // S = [ 1 0 0 0 ] // [ 0 1 0 0 ] // [ 0 0 1 0 ] // [ 0 0 0 -1 ]. // // The surface is defined by // p^T * S * p = 0, // and the tangent planes are defined by // q * S^-1 * q^T = 0. // Note that S = S^-1. // // The symmetric matrix R, defined by // R = M * S^-1 * M^T, // characterizes the tangent planes. Specifically, // min.x = (R[0,3] - sqrt(R[0,3]^2 - R[0,0]*R[3,3]))/R[3,3] // max.x = (R[0,3] + sqrt(R[0,3]^2 - R[0,0]*R[3,3]))/R[3,3] // min.y = (R[1,3] - sqrt(R[1,3]^2 - R[1,1]*R[3,3]))/R[3,3] // max.y = (R[1,3] + sqrt(R[1,3]^2 - R[1,1]*R[3,3]))/R[3,3] // min.z = (R[2,3] - sqrt(R[2,3]^2 - R[2,2]*R[3,3]))/R[3,3] // max.z = (R[2,3] + sqrt(R[2,3]^2 - R[2,2]*R[3,3]))/R[3,3] // // Unfortunately, we can't use dmnsn_matrix because the matrices are not // affine // MS = M * S^-1 = M * S // Last row is [ 0 0 0 -1 ] implicitly double MS[3][4]; for (int i = 0; i < 3; ++i) { for (int j = 0; j < 3; ++j) { MS[i][j] = trans.n[i][j]; } MS[i][3] = -trans.n[i][3]; } // R = MS * M^T // We only compute the upper triangular portion // R[3][3] is implicitly -1 double R[4][4]; for (int i = 0; i < 3; ++i) { for (int j = i; j < 3; ++j) { R[i][j] = 0.0; for (int k = 0; k < 4; ++k) { R[i][j] += MS[i][k]*trans.n[j][k]; } } R[i][3] = MS[i][3]; } dmnsn_bounding_box box; double dx = sqrt(R[0][3]*R[0][3] + R[0][0]); box.min.x = -R[0][3] - dx; box.max.x = -R[0][3] + dx; double dy = sqrt(R[1][3]*R[1][3] + R[1][1]); box.min.y = -R[1][3] - dy; box.max.y = -R[1][3] + dy; double dz = sqrt(R[2][3]*R[2][3] + R[2][2]); box.min.z = -R[2][3] - dz; box.max.z = -R[2][3] + dz; return box; } /// Sphere vtable. static const dmnsn_object_vtable dmnsn_sphere_vtable = { .intersection_fn = dmnsn_sphere_intersection_fn, .inside_fn = dmnsn_sphere_inside_fn, .bounding_fn = dmnsn_sphere_bounding_fn, }; dmnsn_object * dmnsn_new_sphere(dmnsn_pool *pool) { dmnsn_object *sphere = dmnsn_new_object(pool); sphere->vtable = &dmnsn_sphere_vtable; return sphere; }