/************************************************************************* * Copyright (C) 2009-2014 Tavian Barnes * * * * This file is part of The Dimension Library. * * * * The Dimension Library is free software; you can redistribute it and/ * * or modify it under the terms of the GNU Lesser General Public License * * as published by the Free Software Foundation; either version 3 of the * * License, or (at your option) any later version. * * * * The Dimension Library is distributed in the hope that it will be * * useful, but WITHOUT ANY WARRANTY; without even the implied warranty * * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * Lesser General Public License for more details. * * * * You should have received a copy of the GNU Lesser General Public * * License along with this program. If not, see * * . * *************************************************************************/ /** * @file * Cones/cylinders. */ #include "dimension.h" #include /** Cone type. */ typedef struct dmnsn_cone { dmnsn_object object; double r1, r2; } dmnsn_cone; /** Intersection callback for a cone. */ static bool dmnsn_cone_intersection_fn(const dmnsn_object *object, dmnsn_line l, dmnsn_intersection *intersection) { const dmnsn_cone *cone = (const dmnsn_cone *)object; double r1 = cone->r1, r2 = cone->r2; /* Solve (x0 + nx*t)^2 + (z0 + nz*t)^2 == (((r2 - r1)*(y0 + ny*t) + r1 + r2)/2)^2 */ double poly[3], x[2]; poly[2] = l.n.x*l.n.x + l.n.z*l.n.z - l.n.y*l.n.y*(r2 - r1)*(r2 - r1)/4.0; poly[1] = 2.0*(l.n.x*l.x0.x + l.n.z*l.x0.z) - l.n.y*(r2 - r1)*(l.x0.y*(r2 - r1) + r2 + r1)/2.0; poly[0] = l.x0.x*l.x0.x + l.x0.z*l.x0.z - (l.x0.y*(r2 - r1) + r2 + r1)*(l.x0.y*(r2 - r1) + r2 + r1)/4.0; size_t n = dmnsn_polynomial_solve(poly, 2, x); if (n > 0) { double t = x[0]; dmnsn_vector p; if (n == 2) { t = dmnsn_min(t, x[1]); p = dmnsn_line_point(l, t); if (p.y <= -1.0 || p.y >= 1.0) { t = dmnsn_max(x[0], x[1]); p = dmnsn_line_point(l, t); } } else { p = dmnsn_line_point(l, t); } if (t >= 0.0 && p.y >= -1.0 && p.y <= 1.0) { double r = ((r2 - r1)*p.y + r1 + r2)/2.0; dmnsn_vector norm = dmnsn_new_vector(p.x, -r*(r2 - r1)/2.0, p.z); intersection->t = t; intersection->normal = norm; return true; } } return false; } /** Inside callback for a cone. */ static bool dmnsn_cone_inside_fn(const dmnsn_object *object, dmnsn_vector point) { const dmnsn_cone *cone = (const dmnsn_cone *)cone; double r1 = cone->r1, r2 = cone->r2; double r = (point.y*(r2 - r1) + r1 + r2)/2.0; return point.x*point.x + point.z*point.z < r*r && point.y > -1.0 && point.y < 1.0; } /** Cone cap type. */ typedef struct dmnsn_cone_cap { dmnsn_object object; double r; } dmnsn_cone_cap; /** Cone cap intersection function. */ static bool dmnsn_cone_cap_intersection_fn(const dmnsn_object *object, dmnsn_line l, dmnsn_intersection *intersection) { if (l.n.y != 0.0) { const dmnsn_cone_cap *cap = (const dmnsn_cone_cap *)object; double r = cap->r; double t = -l.x0.y/l.n.y; dmnsn_vector p = dmnsn_line_point(l, t); if (t >= 0.0 && p.x*p.x + p.z*p.z <= r*r) { intersection->t = t; intersection->normal = dmnsn_new_vector(0.0, -1.0, 0.0); return true; } } return false; } /** Inside callback for a cone cap. */ static bool dmnsn_cone_cap_inside_fn(const dmnsn_object *object, dmnsn_vector point) { return false; } /** Allocate a new cone cap. */ dmnsn_object * dmnsn_new_cone_cap(double r) { dmnsn_cone_cap *cap = DMNSN_MALLOC(dmnsn_cone_cap); dmnsn_init_object(&cap->object); cap->object.intersection_fn = dmnsn_cone_cap_intersection_fn; cap->object.inside_fn = dmnsn_cone_cap_inside_fn; cap->object.bounding_box.min = dmnsn_new_vector(-r, 0.0, -r); cap->object.bounding_box.max = dmnsn_new_vector(+r, 0.0, +r); cap->r = r; return &cap->object; } /* Allocate a new cone object */ dmnsn_object * dmnsn_new_cone(double r1, double r2, bool open) { dmnsn_cone *cone = DMNSN_MALLOC(dmnsn_cone); dmnsn_init_object(&cone->object); cone->object.intersection_fn = dmnsn_cone_intersection_fn; cone->object.inside_fn = dmnsn_cone_inside_fn; double rmax = dmnsn_max(r1, r2); cone->object.bounding_box.min = dmnsn_new_vector(-rmax, -1.0, -rmax); cone->object.bounding_box.max = dmnsn_new_vector(rmax, 1.0, rmax); cone->r1 = r1; cone->r2 = r2; if (open) { return &cone->object; } /* Implement closed cones as a union with the caps */ dmnsn_object *cap1 = dmnsn_new_cone_cap(r1); dmnsn_object *cap2 = dmnsn_new_cone_cap(r2); cap1->intrinsic_trans = dmnsn_translation_matrix( dmnsn_new_vector(0.0, -1.0, 0.0) ); cap2->intrinsic_trans = dmnsn_translation_matrix( dmnsn_new_vector(0.0, +1.0, 0.0) ); /* Flip the normal around for the top cap */ cap2->intrinsic_trans.n[1][1] = -1.0; dmnsn_array *withcaps = dmnsn_new_array(sizeof(dmnsn_object *)); dmnsn_array_push(withcaps, &cone); dmnsn_array_push(withcaps, &cap1); dmnsn_array_push(withcaps, &cap2); dmnsn_object *cone_cap_union = dmnsn_new_csg_union(withcaps); dmnsn_delete_array(withcaps); return cone_cap_union; }