diff options
Diffstat (limited to 'libdimension')
-rw-r--r-- | libdimension/polynomial.c | 34 |
1 files changed, 21 insertions, 13 deletions
diff --git a/libdimension/polynomial.c b/libdimension/polynomial.c index 86c5ebb..b1dcc2a 100644 --- a/libdimension/polynomial.c +++ b/libdimension/polynomial.c @@ -144,27 +144,27 @@ dmnsn_root_bounds_recursive(double poly[], size_t degree, double *c, double *k, { size_t s = dmnsn_descartes_bound(poly, degree); if (s >= 2) { + /* Get the left child */ + dmnsn_polynomial_scale(poly, degree, 1.0/2.0); *c *= 2.0; *k /= 2.0; double currc = *c, currk = *k; - /* Get the left child */ - dmnsn_polynomial_scale(poly, degree, 1.0/2.0); - + /* Test the left child */ size_t n = dmnsn_root_bounds_recursive(poly, degree, c, k, bounds, nbounds); - if (n == nbounds) { + if (nbounds == n) { return n; } + bounds += n; + nbounds -= n; /* Get the right child from the last tested polynomial */ dmnsn_polynomial_translate(poly, degree); dmnsn_polynomial_scale(poly, degree, currk/(*k)); - *c = currc + 1.0; *k = currk; - bounds += n; - nbounds -= n; + /* Test the right child */ n += dmnsn_root_bounds_recursive(poly, degree, c, k, bounds, nbounds); return n; } else if (s == 1) { @@ -204,6 +204,9 @@ dmnsn_root_bounds(const double poly[], size_t degree, double bounds[][2], return n; } +/** Maximum number of iterations in dmnsn_bisect_root() before bailout. */ +#define DMNSN_BISECT_ITERATIONS 64 + /** Use the false position method to find a root in a range that contains exactly one root. */ static inline double @@ -215,11 +218,20 @@ dmnsn_bisect_root(const double poly[], size_t degree, double min, double max) double mid, evmid; int lastsign = 0; - do { + for (size_t i = 0; i < DMNSN_BISECT_ITERATIONS; ++i) { mid = (min*evmax - max*evmin)/(evmax - evmin); evmid = dmnsn_polynomial_evaluate(poly, degree, mid); int sign = dmnsn_sign(evmid); + if ((fabs(evmid) < fabs(mid)*dmnsn_epsilon + /* This condition improves stability when one of the bounds is + close to a different root than we are trying to find */ + && fabs(evmid) <= evinitial) + || max - min < fabs(mid)*dmnsn_epsilon) + { + break; + } + if (mid < min) { /* This can happen due to numerical instability in the root bounding algorithm, so behave like the normal secant method */ @@ -249,11 +261,7 @@ dmnsn_bisect_root(const double poly[], size_t degree, double min, double max) } lastsign = sign; - } while ((fabs(evmid) >= fabs(mid)*dmnsn_epsilon - /* This condition improves stability when one of the bounds is - close to a different root than we are trying to find */ - || fabs(evmid) > evinitial) - && max - min >= fabs(mid)*dmnsn_epsilon); + } return mid; } |