/********************************************************************* * bfs * * Copyright (C) 2015 Tavian Barnes * * * * This program is free software. It comes without any warranty, to * * the extent permitted by applicable law. You can redistribute it * * and/or modify it under the terms of the Do What The Fuck You Want * * To Public License, Version 2, as published by Sam Hocevar. See * * the COPYING file or http://www.wtfpl.net/ for more details. * *********************************************************************/ /** * bftw() implementation. * * The goal of this implementation is to avoid re-traversal by using openat() as * much as possible. Since the number of open file descriptors is limited, the * 'dircache' maintains a priority queue of open 'dircache_entry's, ordered by * their reference counts to keep the most-referenced parent directories open. * * The 'dirqueue' is a simple FIFO of 'dircache_entry's left to explore. */ #include "bftw.h" #include #include #include #include #include #include #include #include #include #include #include #include /** * Simple dynamically-sized string type. */ struct dynstr { char *str; size_t length; size_t capacity; }; /** Initialize a dynstr. */ static void dynstr_init(struct dynstr *dstr) { dstr->str = NULL; dstr->length = 0; dstr->capacity = 0; } /** Grow a dynstr to the given capacity if necessary. */ static int dynstr_grow(struct dynstr *dstr, size_t length) { if (length >= dstr->capacity) { size_t new_capacity = 3*(length + 1)/2; char *new_str = realloc(dstr->str, new_capacity); if (!new_str) { return -1; } dstr->str = new_str; dstr->capacity = new_capacity; } return 0; } /** Concatenate a string to a dynstr at the given position. */ static int dynstr_concat(struct dynstr *dstr, size_t pos, const char *more) { size_t morelen = strlen(more); size_t length = pos + morelen; if (dynstr_grow(dstr, length) != 0) { return -1; } memcpy(dstr->str + pos, more, morelen + 1); dstr->length = length; return 0; } /** Free a dynstr. */ static void dynstr_free(struct dynstr *dstr) { free(dstr->str); } /** * A single entry in the dircache. */ struct dircache_entry { /** The parent entry, if any. */ struct dircache_entry *parent; /** This directory's depth in the walk. */ size_t depth; /** Reference count. */ size_t refcount; /** Index in the priority queue. */ size_t heap_index; /** An open file descriptor to this directory, or -1. */ int fd; /** The device number, for cycle detection. */ dev_t dev; /** The inode number, for cycle detection. */ ino_t ino; /** The offset of this directory in the full path. */ size_t nameoff; /** The length of the directory's name. */ size_t namelen; /** The directory's name. */ char name[]; }; /** * A directory cache. */ struct dircache { /** A min-heap of open entries, ordered by refcount. */ struct dircache_entry **heap; /** Current heap size. */ size_t size; /** Maximum heap size. */ size_t capacity; }; /** Initialize a dircache. */ static int dircache_init(struct dircache *cache, size_t capacity) { cache->heap = malloc(capacity*sizeof(struct dircache_entry *)); if (!cache->heap) { return -1; } cache->size = 0; cache->capacity = capacity; return 0; } /** Destroy a dircache. */ static void dircache_free(struct dircache *cache) { assert(cache->size == 0); free(cache->heap); } /** Move an entry to a particular place in the heap. */ static void dircache_heap_move(struct dircache *cache, struct dircache_entry *entry, size_t i) { cache->heap[i] = entry; entry->heap_index = i; } /** Bubble an entry up the heap. */ static void dircache_bubble_up(struct dircache *cache, struct dircache_entry *entry) { size_t i = entry->heap_index; while (i > 0) { size_t pi = (i - 1)/2; struct dircache_entry *parent = cache->heap[pi]; if (entry->refcount >= parent->refcount) { break; } dircache_heap_move(cache, parent, i); i = pi; } dircache_heap_move(cache, entry, i); } /** Bubble an entry down the heap. */ static void dircache_bubble_down(struct dircache *cache, struct dircache_entry *entry) { size_t i = entry->heap_index; while (true) { size_t ci = 2*i + 1; if (ci >= cache->size) { break; } struct dircache_entry *child = cache->heap[ci]; size_t ri = ci + 1; if (ri < cache->size) { struct dircache_entry *right = cache->heap[ri]; if (child->refcount > right->refcount) { ci = ri; child = right; } } dircache_heap_move(cache, child, i); i = ci; } dircache_heap_move(cache, entry, i); } /** Increment a dircache_entry's reference count. */ static void dircache_entry_incref(struct dircache *cache, struct dircache_entry *entry) { ++entry->refcount; if (entry->fd >= 0) { dircache_bubble_down(cache, entry); } } /** Decrement a dircache_entry's reference count. */ static void dircache_entry_decref(struct dircache *cache, struct dircache_entry *entry) { --entry->refcount; if (entry->fd >= 0) { dircache_bubble_up(cache, entry); } } /** Add a dircache_entry to the priority queue. */ static void dircache_push(struct dircache *cache, struct dircache_entry *entry) { assert(cache->size < cache->capacity); assert(entry->fd >= 0); size_t size = cache->size++; entry->heap_index = size; dircache_bubble_up(cache, entry); } /** Close a dircache_entry and remove it from the priority queue. */ static void dircache_pop(struct dircache *cache, struct dircache_entry *entry) { assert(cache->size > 0); assert(entry->fd >= 0); close(entry->fd); entry->fd = -1; size_t size = --cache->size; size_t i = entry->heap_index; if (i != size) { struct dircache_entry *end = cache->heap[size]; end->heap_index = i; dircache_bubble_down(cache, end); } } /** Add an entry to the dircache. */ static struct dircache_entry *dircache_add(struct dircache *cache, struct dircache_entry *parent, const char *name) { size_t namelen = strlen(name); size_t size = sizeof(struct dircache_entry) + namelen; bool needs_slash = false; if (namelen == 0 || name[namelen - 1] != '/') { needs_slash = true; ++size; } struct dircache_entry *entry = malloc(size); if (!entry) { return NULL; } entry->parent = parent; if (parent) { entry->depth = parent->depth + 1; entry->nameoff = parent->nameoff + parent->namelen; } else { entry->depth = 0; entry->nameoff = 0; } entry->refcount = 1; entry->fd = -1; memcpy(entry->name, name, namelen); if (needs_slash) { entry->name[namelen++] = '/'; } entry->namelen = namelen; while (parent) { dircache_entry_incref(cache, parent); parent = parent->parent; } return entry; } /** * Get the full path do a dircache_entry. * * @param entry * The entry to look up. * @param[out] path * Will hold the full path to the entry, with a trailing '/'. */ static int dircache_entry_path(const struct dircache_entry *entry, struct dynstr *path) { size_t namelen = entry->namelen; size_t pathlen = entry->nameoff + namelen; if (dynstr_grow(path, pathlen) != 0) { return -1; } path->length = pathlen; // Build the path backwards path->str[pathlen] = '\0'; do { char *segment = path->str + entry->nameoff; namelen = entry->namelen; memcpy(segment, entry->name, namelen); entry = entry->parent; } while (entry); return 0; } /** * Get the appropriate (fd, path) pair for the *at() family of functions. * * @param cache * The cache containing the entry. * @param entry * The entry being accessed. * @param[out] at_fd * Will hold the appropriate file descriptor to use. * @param[in,out] at_path * Will hold the appropriate path to use. * @return The closest open ancestor entry. */ static struct dircache_entry *dircache_entry_base(struct dircache *cache, struct dircache_entry *entry, int *at_fd, const char **at_path) { struct dircache_entry *base = entry; do { base = base->parent; } while (base && base->fd < 0); if (base) { *at_fd = base->fd; *at_path += base->nameoff + base->namelen; } return base; } /** * Check if we should retry an operation due to EMFILE. * * @param cache * The cache in question. * @param save * A dircache_entry that must be preserved. */ static bool dircache_should_retry(struct dircache *cache, const struct dircache_entry *save) { if (errno == EMFILE && cache->size > 1) { // Too many open files, shrink the cache struct dircache_entry *entry = cache->heap[0]; if (entry == save) { entry = cache->heap[1]; } dircache_pop(cache, entry); cache->capacity = cache->size; return true; } else { return false; } } static size_t misses = 0; static size_t total = 0; /** * Open a dircache_entry. * * @param cache * The cache containing the entry. * @param entry * The entry to open. * @param path * The full path to the entry (see dircache_entry_path()). * @return * The opened DIR *, or NULL on error. */ static DIR *dircache_entry_open(struct dircache *cache, struct dircache_entry *entry, const char *path) { assert(entry->fd < 0); if (cache->size == cache->capacity) { dircache_pop(cache, cache->heap[0]); } int at_fd = AT_FDCWD; const char *at_path = path; struct dircache_entry *base = dircache_entry_base(cache, entry, &at_fd, &at_path); ++total; struct dircache_entry *asdf = entry; do { ++misses; asdf = asdf->parent; } while (asdf != base); int flags = O_RDONLY | O_DIRECTORY | O_CLOEXEC; int fd = openat(at_fd, at_path, flags); if (fd < 0 && dircache_should_retry(cache, base)) { fd = openat(at_fd, at_path, flags); } if (fd < 0) { return NULL; } entry->fd = fd; dircache_push(cache, entry); // Now we dup() the fd and pass it to fdopendir(). This way we can // close the DIR* as soon as we're done with it, reducing the memory // footprint significantly, while keeping the fd around for future // openat() calls. fd = fcntl(entry->fd, F_DUPFD_CLOEXEC, 0); if (fd < 0 && dircache_should_retry(cache, entry)) { fd = fcntl(entry->fd, F_DUPFD_CLOEXEC, 0); } if (fd < 0) { return NULL; } DIR *dir = fdopendir(fd); if (!dir) { close(fd); } return dir; } /** Free a dircache_entry. */ static void dircache_entry_free(struct dircache *cache, struct dircache_entry *entry) { if (entry) { assert(entry->refcount == 0); if (entry->fd >= 0) { dircache_pop(cache, entry); } free(entry); } } /** * A queue of 'dircache_entry's to examine. */ struct dirqueue { /** The circular buffer of entries. */ struct dircache_entry **entries; /** Bitmask for circular buffer indices; one less than the capacity. */ size_t mask; /** The index of the front of the queue. */ size_t front; /** The index of the back of the queue. */ size_t back; }; /** Initialize a dirqueue. */ static int dirqueue_init(struct dirqueue *queue) { size_t size = 256; queue->entries = malloc(size*sizeof(struct dircache_entry *)); if (!queue->entries) { return -1; } queue->mask = size - 1; queue->front = 0; queue->back = 0; return 0; } /** Add an entry to the dirqueue. */ static int dirqueue_push(struct dirqueue *queue, struct dircache_entry *entry) { size_t back = queue->back; queue->entries[back] = entry; back += 1; back &= queue->mask; if (back == queue->front) { size_t old_size = queue->mask + 1; struct dircache_entry **old_entries = queue->entries; size_t new_size = 2*old_size; struct dircache_entry **new_entries = malloc(new_size*sizeof(struct dircache_entry *)); if (!new_entries) { return -1; } size_t mid = old_size - back; memcpy(new_entries, old_entries + back, mid*sizeof(struct dircache_entry *)); memcpy(new_entries + mid, old_entries, back*sizeof(struct dircache_entry *)); free(old_entries); queue->entries = new_entries; queue->mask = new_size - 1; queue->front = 0; queue->back = old_size; } else { queue->back = back; } return 0; } /** Remove an entry from the dirqueue. */ static struct dircache_entry *dirqueue_pop(struct dirqueue *queue) { if (queue->front == queue->back) { return NULL; } struct dircache_entry *entry = queue->entries[queue->front]; queue->front += 1; queue->front &= queue->mask; return entry; } /** Destroy a dirqueue. */ static void dirqueue_free(struct dirqueue *queue) { free(queue->entries); } /** Fill in ftwbuf fields with information from a struct dirent. */ static void ftwbuf_use_dirent(struct BFTW *ftwbuf, const struct dirent *de) { #if defined(_DIRENT_HAVE_D_TYPE) || defined(DT_DIR) switch (de->d_type) { case DT_BLK: ftwbuf->typeflag = BFTW_BLK; break; case DT_CHR: ftwbuf->typeflag = BFTW_CHR; break; case DT_DIR: ftwbuf->typeflag = BFTW_DIR; break; case DT_FIFO: ftwbuf->typeflag = BFTW_FIFO; break; case DT_LNK: ftwbuf->typeflag = BFTW_LNK; break; case DT_REG: ftwbuf->typeflag = BFTW_REG; break; case DT_SOCK: ftwbuf->typeflag = BFTW_SOCK; break; } #endif } /** Call stat() and use the results. */ static int ftwbuf_stat(struct BFTW *ftwbuf, struct stat *sb, int flags) { int ret = fstatat(ftwbuf->at_fd, ftwbuf->at_path, sb, flags); if (ret != 0) { return ret; } ftwbuf->statbuf = sb; switch (sb->st_mode & S_IFMT) { case S_IFBLK: ftwbuf->typeflag = BFTW_BLK; break; case S_IFCHR: ftwbuf->typeflag = BFTW_CHR; break; case S_IFDIR: ftwbuf->typeflag = BFTW_DIR; break; case S_IFIFO: ftwbuf->typeflag = BFTW_FIFO; break; case S_IFLNK: ftwbuf->typeflag = BFTW_LNK; break; case S_IFREG: ftwbuf->typeflag = BFTW_REG; break; case S_IFSOCK: ftwbuf->typeflag = BFTW_SOCK; break; } return 0; } /** * Possible bftw() traversal statuses. */ enum bftw_status { /** The current path is state.current. */ BFTW_CURRENT, /** The current path is a child of state.current. */ BFTW_CHILD, /** dircache_entry's are being garbage collected. */ BFTW_GC, }; /** * Holds the current state of the bftw() traversal. */ struct bftw_state { /** bftw() callback. */ bftw_fn *fn; /** bftw() flags. */ int flags; /** bftw() callback data. */ void *ptr; /** The appropriate errno value, if any. */ int error; /** The cache of open directories. */ struct dircache cache; /** The queue of directories left to explore. */ struct dirqueue queue; /** The current dircache entry. */ struct dircache_entry *current; /** The current traversal status. */ enum bftw_status status; /** The current path being explored. */ struct dynstr path; /** Extra data about the current file. */ struct BFTW ftwbuf; /** stat() buffer for the current file. */ struct stat statbuf; }; /** * Initialize the bftw() state. */ static int bftw_state_init(struct bftw_state *state, bftw_fn *fn, int nopenfd, int flags, void *ptr) { state->fn = fn; state->flags = flags; state->ptr = ptr; state->error = 0; if (nopenfd < 2) { errno = EMFILE; return -1; } // -1 to account for dup() if (dircache_init(&state->cache, nopenfd - 1) != 0) { return -1; } if (dirqueue_init(&state->queue) != 0) { dircache_free(&state->cache); return -1; } state->current = NULL; state->status = BFTW_CURRENT; dynstr_init(&state->path); return 0; } /** * Concatenate a subpath to the current path. */ static int bftw_path_concat(struct bftw_state *state, const char *subpath) { size_t nameoff = 0; struct dircache_entry *current = state->current; if (current) { nameoff = current->nameoff + current->namelen; } state->status = BFTW_CHILD; return dynstr_concat(&state->path, nameoff, subpath); } /** * Record an error. */ static void bftw_set_error(struct bftw_state *state, int error) { state->error = error; state->ftwbuf.error = error; state->ftwbuf.typeflag = BFTW_ERROR; } /** * Figure out the name offset in a path. */ static size_t basename_offset(const char *path) { size_t i; // Strip trailing slashes for (i = strlen(path); i > 0 && path[i - 1] == '/'; --i); // Find the beginning of the name for (; i > 0 && path[i - 1] != '/'; --i); return i; } /** * Initialize the buffers with data about the current path. */ static void bftw_init_buffers(struct bftw_state *state, const struct dirent *de) { struct BFTW *ftwbuf = &state->ftwbuf; ftwbuf->path = state->path.str; ftwbuf->error = 0; ftwbuf->visit = (state->status == BFTW_GC ? BFTW_POST : BFTW_PRE); ftwbuf->statbuf = NULL; ftwbuf->at_fd = AT_FDCWD; ftwbuf->at_path = ftwbuf->path; struct dircache_entry *current = state->current; if (current) { ftwbuf->nameoff = current->nameoff; ftwbuf->depth = current->depth; if (state->status == BFTW_CHILD) { ftwbuf->nameoff += current->namelen; ++ftwbuf->depth; ftwbuf->at_fd = current->fd; ftwbuf->at_path += ftwbuf->nameoff; } else { dircache_entry_base(&state->cache, current, &ftwbuf->at_fd, &ftwbuf->at_path); } } else { ftwbuf->nameoff = basename_offset(ftwbuf->path); ftwbuf->depth = 0; } if (de) { ftwbuf_use_dirent(ftwbuf, de); } else if (state->status != BFTW_CHILD) { ftwbuf->typeflag = BFTW_DIR; } else { ftwbuf->typeflag = BFTW_UNKNOWN; } bool follow = state->flags & (current ? BFTW_FOLLOW_NONROOT : BFTW_FOLLOW_ROOT); ftwbuf->at_flags = follow ? 0 : AT_SYMLINK_NOFOLLOW; bool detect_cycles = (state->flags & BFTW_DETECT_CYCLES) && state->status == BFTW_CHILD; bool mount = state->flags & BFTW_MOUNT; if ((state->flags & BFTW_STAT) || ftwbuf->typeflag == BFTW_UNKNOWN || (ftwbuf->typeflag == BFTW_LNK && follow) || (ftwbuf->typeflag == BFTW_DIR && (detect_cycles || mount))) { int ret = ftwbuf_stat(ftwbuf, &state->statbuf, ftwbuf->at_flags); if (ret != 0 && follow && errno == ENOENT) { // Could be a broken symlink, retry without following ftwbuf->at_flags = AT_SYMLINK_NOFOLLOW; ret = ftwbuf_stat(ftwbuf, &state->statbuf, ftwbuf->at_flags); } if (ret != 0) { bftw_set_error(state, errno); return; } if (ftwbuf->typeflag == BFTW_DIR && detect_cycles) { dev_t dev = ftwbuf->statbuf->st_dev; ino_t ino = ftwbuf->statbuf->st_ino; for (const struct dircache_entry *entry = current; entry; entry = entry->parent) { if (dev == entry->dev && ino == entry->ino) { bftw_set_error(state, ELOOP); return; } } } } } /** internal action: Abort the traversal. */ #define BFTW_FAIL (-1) /** * Invoke the callback on the given path. */ static int bftw_handle_path(struct bftw_state *state) { // Never give the callback BFTW_ERROR unless BFTW_RECOVER is specified if (state->ftwbuf.typeflag == BFTW_ERROR && !(state->flags & BFTW_RECOVER)) { return BFTW_FAIL; } enum bftw_action action = state->fn(&state->ftwbuf, state->ptr); switch (action) { case BFTW_CONTINUE: case BFTW_SKIP_SIBLINGS: case BFTW_SKIP_SUBTREE: case BFTW_STOP: return action; default: state->error = EINVAL; return BFTW_FAIL; } } /** * Add a new entry to the cache. */ static struct dircache_entry *bftw_add(struct bftw_state *state, const char *name) { struct dircache_entry *entry = dircache_add(&state->cache, state->current, name); if (!entry) { return NULL; } if (state->flags & (BFTW_DETECT_CYCLES | BFTW_MOUNT)) { const struct stat *statbuf = state->ftwbuf.statbuf; if (statbuf) { entry->dev = statbuf->st_dev; entry->ino = statbuf->st_ino; } } return entry; } /** * Push a new entry onto the queue. */ static int bftw_push(struct bftw_state *state, const char *name) { struct dircache_entry *entry = bftw_add(state, name); if (!entry) { return -1; } return dirqueue_push(&state->queue, entry); } /** * Pop an entry off the queue. */ static int bftw_pop(struct bftw_state *state, bool invoke_callback) { int ret = BFTW_CONTINUE; struct dircache_entry *entry = state->current; if (!(state->flags & BFTW_DEPTH)) { invoke_callback = false; } if (entry && invoke_callback) { if (dircache_entry_path(entry, &state->path) != 0) { ret = BFTW_FAIL; invoke_callback = false; } } state->status = BFTW_GC; while (entry) { struct dircache_entry *current = entry; entry = entry->parent; dircache_entry_decref(&state->cache, current); if (current->refcount > 0) { continue; } if (invoke_callback) { size_t offset = current->nameoff + current->namelen; state->path.str[offset] = '\0'; if (current->namelen > 1) { // Trim the trailing slash state->path.str[offset - 1] = '\0'; } state->current = current; bftw_init_buffers(state, NULL); int action = bftw_handle_path(state); switch (action) { case BFTW_CONTINUE: case BFTW_SKIP_SIBLINGS: case BFTW_SKIP_SUBTREE: break; case BFTW_STOP: case BFTW_FAIL: ret = action; invoke_callback = false; break; } } dircache_entry_free(&state->cache, current); } state->current = dirqueue_pop(&state->queue); state->status = BFTW_CURRENT; return ret; } /** * Dispose of the bftw() state. */ static void bftw_state_free(struct bftw_state *state) { while (state->current) { bftw_pop(state, false); } dirqueue_free(&state->queue); dircache_free(&state->cache); dynstr_free(&state->path); } int bftw(const char *path, bftw_fn *fn, int nopenfd, enum bftw_flags flags, void *ptr) { int ret = -1; struct bftw_state state; if (bftw_state_init(&state, fn, nopenfd, flags, ptr) != 0) { return -1; } // Handle 'path' itself first if (bftw_path_concat(&state, path) != 0) { goto fail; } bftw_init_buffers(&state, NULL); switch (bftw_handle_path(&state)) { case BFTW_CONTINUE: case BFTW_SKIP_SIBLINGS: break; case BFTW_SKIP_SUBTREE: case BFTW_STOP: goto done; case BFTW_FAIL: goto fail; } if (state.ftwbuf.typeflag != BFTW_DIR) { goto done; } // Now start the breadth-first search state.current = bftw_add(&state, path); if (!state.current) { goto fail; } do { if (dircache_entry_path(state.current, &state.path) != 0) { goto fail; } DIR *dir = dircache_entry_open(&state.cache, state.current, state.path.str); if (!dir) { int error = errno; bftw_init_buffers(&state, NULL); bftw_set_error(&state, error); switch (bftw_handle_path(&state)) { case BFTW_CONTINUE: case BFTW_SKIP_SIBLINGS: case BFTW_SKIP_SUBTREE: goto next; case BFTW_STOP: goto done; case BFTW_FAIL: goto fail; } } struct dirent *de; while ((de = readdir(dir)) != NULL) { if (strcmp(de->d_name, ".") == 0 || strcmp(de->d_name, "..") == 0) { continue; } if (bftw_path_concat(&state, de->d_name) != 0) { goto fail; } bftw_init_buffers(&state, de); switch (bftw_handle_path(&state)) { case BFTW_CONTINUE: break; case BFTW_SKIP_SIBLINGS: closedir(dir); goto next; case BFTW_SKIP_SUBTREE: continue; case BFTW_STOP: closedir(dir); goto done; case BFTW_FAIL: closedir(dir); goto fail; } if (state.ftwbuf.typeflag == BFTW_DIR) { const struct stat *statbuf = state.ftwbuf.statbuf; if ((flags & BFTW_MOUNT) && statbuf && statbuf->st_dev != state.current->dev) { continue; } if (bftw_push(&state, de->d_name) != 0) { closedir(dir); goto fail; } } } closedir(dir); next: switch (bftw_pop(&state, true)) { case BFTW_CONTINUE: case BFTW_SKIP_SIBLINGS: case BFTW_SKIP_SUBTREE: break; case BFTW_STOP: goto done; case BFTW_FAIL: goto fail; } } while (state.current); done: if (state.error == 0) { ret = 0; } fail: if (state.error == 0) { state.error = errno; } bftw_state_free(&state); errno = state.error; return ret; }