Category Archives: Computer Science

Cracking DHCE (Diffie-Hellman color exchange)

I recently saw a video that explains Diffie–Hellman key exchange in terms of mixing colors of paint. It's a wonderfully simple and informative analogy, that Wikipedia actually uses as well. If you don't know about Diffie-Hellman, definitely watch the video and/or read the Wikipedia page to get a handle on it—it's not that complicated once you get the "trick." The color analogy intrigued me because I know just enough about both cryptography and color theory to be dangerous. So in this post, I'm going to attack the security of the color exchange protocol. ("Real" Diffie-Hellman remains secure, as far as I know.) Continue reading Cracking DHCE (Diffie-Hellman color exchange)

Fast, Branchless Ray/Bounding Box Intersections, Part 2: NaNs

In part 1, I outlined an algorithm for computing intersections between rays and axis-aligned bounding boxes. The idea to eliminate branches by relying on IEEE 754 floating point properties goes back to Brian Smits in [1], and the implementation was fleshed out by Amy Williams. et al. in [2].

Continue reading Fast, Branchless Ray/Bounding Box Intersections, Part 2: NaNs

Exact Bounding Boxes for Spheres/Ellipsoids

Finding the tightest axis-aligned bounding box for a sphere is trivial: the box extends from the center by the radius in all dimensions. But once the sphere is transformed, finding the minimal bounding box becomes trickier. Rotating a sphere, for example, shouldn't change its bounding box, but naïvely rotating the bounding box will expand it unnecessarily. Luckily there's a trick to computing minimal bounding boxes by representing the transformed sphere as a quadric surface.

Continue reading Exact Bounding Boxes for Spheres/Ellipsoids

A Beautiful Ray/Mesh Intersection Algorithm

In my last post, I talked about a beautiful method for computing ray/triangle intersections. In this post, I will extend it to computing intersections with triangle fans. Since meshes are often stored in a corner table, which is simply an array of triangle fans, this gives an efficient algorithm for ray tracing triangle meshes.

Continue reading A Beautiful Ray/Mesh Intersection Algorithm